Responses to the letter on “Transfer learning for neural network model in Chlorophyll-a dynamics prediction”

2020 ◽  
Vol 27 (31) ◽  
pp. 39667-39668
Author(s):  
Zhenliang Liao ◽  
Wenchong Tian ◽  
Xuan Wang
2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


Author(s):  
Pawan Sonawane ◽  
Sahel Shardhul ◽  
Raju Mendhe

The vast majority of skin cancer deaths are from melanoma, with about 1.04 million cases annually. Early detection of the same can be immensely helpful in order to try to cure it. But most of the diagnosis procedures are either extremely expensive or not available to a vast majority, as these centers are concentrated in urban regions only. Thus, there is a need for an application that can perform a quick, efficient, and low-cost diagnosis. Our solution proposes to build a server less mobile application on the AWS cloud that takes the images of potential skin tumors and classifies it as either Malignant or Benign. The classification would be carried out using a trained Convolution Neural Network model and Transfer learning (Inception v3). Several experiments will be performed based on Morphology and Color of the tumor to identify ideal parameters.


2020 ◽  
Author(s):  
Wen-Hsien Chang ◽  
Han-Kuei Wu ◽  
Lun-chien Lo ◽  
William W. L. Hsiao ◽  
Hsueh-Ting Chu ◽  
...  

Abstract Background: Traditional Chinese medicine (TCM) describes physiological and pathological changes inside and outside the human body by the application of four methods of diagnosis. One of the four methods, tongue diagnosis, is widely used by TCM physicians, since it allows direct observations that prevent discrepancies in the patient’s history and, as such, provides clinically important, objective evidence. The clinical significance of tongue features has been explored in both TCM and modern medicine. However, TCM physicians may have different interpretations of the features displayed by the same tongue, and therefore intra- and inter-observer agreements are relatively low. If an automated interpretation system could be developed, more consistent results could be obtained, and learning could also be more efficient. This study will apply a recently developed deep learning method to the classification of tongue features, and indicate the regions where the features are located.Methods: A large number of tongue photographs with labeled fissures were used. Transfer learning was conducted using the ImageNet-pretrained ResNet50 model to determine whether tongue fissures were identified on a tongue photograph. Often, the neural network model lacks interpretability, and users cannot understand how the model determines the presence of tongue fissures. Therefore, Gradient-weighted Class Activation Mapping (Grad-CAM) was also applied to directly mark the tongue features on the tongue image. Results: Only 6 epochs were trained in this study and no graphics processing units (GPUs) were used. It took less than 4 minutes for each epoch to be trained. The correct rate for the test set was approximately 70%. After the model training was completed, Grad-CAM was applied to localize tongue fissures in each image. The neural network model not only determined whether tongue fissures existed, but also allowed users to learn about the tongue fissure regions.Conclusions: This study demonstrated how to apply transfer learning using the ImageNet-pretrained ResNet50 model for the identification and localization of tongue fissures and regions. The neural network model built in this study provided interpretability and intuitiveness, (often lacking in general neural network models), and improved the feasibility for clinical application.


2021 ◽  
Author(s):  
Kimberly Robasky ◽  
Raphael Kim ◽  
Hong Yi ◽  
Hao Xu ◽  
Bokan Bao ◽  
...  

Background: Predicting outcomes on human genetic studies is difficult because the number of variables (genes) is often much larger than the number of observations (human subject tissue samples). We investigated means for improving model performance on the types of under-constrained problems that are typical in human genetics, where the number of genes (features) are strongly correlated but may exceed 10,000, and the number of study participants (observations) may be limited to under 1,000. Methods: We created 'train', 'validate' and 'test' datasets from 240 microarray observations from 127 subjects diagnosed with autism spectrum disorder (ASD) and 113 'typically developing' (TD) subjects (a.k.a., the 'naive' model). We trained a neural network model (a.k.a., the 'naive' model) on 10,422 genes using the 'train' dataset, composed of 70 ASD and 65 TD subjects, and we restricted the model to one, fully-connected hidden layer to minimize the number of trainable parameters, including a drop-out layer to further thin the network. We experimented with alternative network architectures and tuned the hyperparameters using the 'validate' dataset and performed a single, final evaluation using the hold-out 'test' dataset. Next, we trained a neural network model using the identical architecture and identical genes to predict tissue type in GTEx data. We transferred that learning by replacing the top layer of the GTEx model with a layer to predict ASD outcome and we retrained on the ASD dataset, again using the identical 10,422 genes. Findings: The 'naive' neural network model had AUROC=0.58 for the task of predicting ASD outcomes, which saw a statistically significant 7.8% improvement through the use of transfer learning. Interpretation: We demonstrated that neural network learning can be transferred from models trained on large RNA-Seq gene expression to a model trained on a small, microarray gene expression dataset with clinical utility for mitigating over-training on small sample sizes. Incidentally, we built a highly accurate classifier of tissue type with which to perform the transfer learning. Author Summary: Image recognition and natural language processing have enjoyed great success in reusing the computational efforts and data sources to overcome the problem of over-training a neural network on a limited dataset. Other domains using deep learning, including genomics and clinical applications, have been slower to benefit from transfer learning. Here we demonstrate data preparation and modeling techniques that allow genomics researchers to take advantage of transfer learning in order to increase the utility of limited clinical datasets. We show that a non-pretrained, 'naive' model performance can be improved by 7.8% by transferring learning from a highly performant model trained on GTEx data to solve a similar problem.


2020 ◽  
Author(s):  
Wen-Hsien Chang ◽  
Han-Kuei Wu ◽  
Lun-chien Lo ◽  
William W. L. Hsiao ◽  
Hsueh-Ting Chu ◽  
...  

Abstract Background Traditional Chinese medicine (TCM) describes physiological and pathological changes inside and outside the human body by the application of four methods of diagnosis. One of the four methods, tongue diagnosis, is widely used by TCM physicians, since it allows direct observations that prevent discrepancies in the patient’s history and, as such, provides clinically important, objective evidence. The clinical significance of tongue features has been explored in both TCM and modern medicine. However, TCM physicians may have different interpretations of the features displayed by the same tongue, and therefore intra- and inter-observer agreements are relatively low. If an automated interpretation system could be developed, more consistent results could be obtained, and learning could also be more efficient. This study will apply a recently developed deep learning method to the classification of tongue features, and indicate the regions where the features are located. Methods A large number of tongue photographs with labeled fissures were used. Transfer learning was conducted using the ImageNet-pretrained ResNet50 model to determine whether tongue fissures were identified on a tongue photograph. Often, the neural network model lacks interpretability, and users cannot understand how the model determines the presence of tongue fissures. Therefore, Gradient-weighted Class Activation Mapping (Grad-CAM) was also applied to directly mark the tongue features on the tongue image. Results Only 6 epochs were trained in this study and no graphics processing units (GPUs) were used. It took less than 4 minutes for each epoch to be trained. The correct rate for the test set was approximately 70%. After the model training was completed, Grad-CAM was applied to localize tongue fissures in each image. The neural network model not only determined whether tongue fissures existed, but also allowed users to learn about the tongue fissure regions. Conclusions This study demonstrated how to apply transfer learning using the ImageNet-pretrained ResNet50 model for the identification and localization of tongue fissures and regions. The neural network model built in this study provided interpretability and intuitiveness, (often lacking in general neural network models), and improved the feasibility for clinical application.


Sign in / Sign up

Export Citation Format

Share Document