scholarly journals Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (Lotus) in water and sediment

Author(s):  
Maranda Esterhuizen ◽  
Young Jun Kim

AbstractPlastic waste is recognised as hazardous, with the risk increasing as the polymers break down in nature to secondary microplastics or even nanoplastics. The number of studies reporting on the prevalence of microplastic in every perceivable niche and bioavailable to biota is dramatically increasing. Knowledge of the ecotoxicology of microplastic is advancing as well; however, information regarding plants, specifically aquatic macrophytes, is still lacking. The present study aimed to gain more information on the ecotoxicological effects of six different polymer types as 4 mm microplastic on the morphology (germination and growth) and the physiology (catalase and glutathione S-transferase activity) of the rooted aquatic macrophyte, Nelumbo nucifera. The role of sediment was also considered by conducting all exposure both in a sediment-containing and sediment-free exposure system. Polyvinyl chloride and polyurethane exposures caused the highest inhibition of germination and growth compared to the control. However, the presence of sediment significantly decreased the adverse effects. Catalase activity was increased with exposure to polyvinyl chloride, polyurethane, and polystyrene, both in the presence and absence of sediment but more so in the sediment-free system. Glutathione S-transferase activity was significantly increased with exposure to polypropylene, polyvinyl chloride, and polyethylene terephthalate in the sediment-free system and exposure to polyethylene terephthalate and polyurethane in the absence of sediment. There was no clear correlation between the morphological and physiological effects observed. Further studies are required to understand the underlying toxicity mechanism of microplastics.

2021 ◽  
Author(s):  
Maranda Esterhuizen ◽  
Youngjun Kim

Abstract Plastic waste is recognised as hazardous, with the risk increasing as the polymers break down in nature to secondary microplastics or even nanoplastics. The number of studies reporting on the prevalence of microplastic in every perceivable niche and bioavailable to biota is dramatically increasing. Knowledge of the ecotoxicology of microplastic is advancing as well; however, information regarding plants, specifically aquatic macrophytes, is still lacking. The present study aimed to gain more information on the ecotoxicological effects of six different polymer types as 4 mm microplastic on the morphology (germination and growth) and the physiology (catalase and glutathione S-transferase activity) of the rooted aquatic macrophyte, Nelumbo nucifera. The role of sediment was also considered by conducting all exposure both in a sediment-containing and sediment-free exposure system. Polyvinyl chloride and polyurethane exposures caused the highest inhibition of germination and growth compared to the control. However, the presence of sediment significantly decreased the adverse effects. Catalase activity was increased with exposure to polyvinyl chloride, polyurethane, and polystyrene, both in the presence and absence of sediment but more so in the sediment-free system. Glutathione S-transferase activity was significantly increased with exposure to polypropylene, polyvinyl chloride, and polyethylene terephthalate in the sediment-free system and exposure to polyethylene terephthalate and polyurethane in the absence of sediment. There was no clear correlation between the morphological and physiological effects observed. Further studies are required to understand the underlying toxicity mechanism of microplastics.


1991 ◽  
Vol 46 (9-10) ◽  
pp. 850-855 ◽  
Author(s):  
John V. Dean ◽  
John W. Gronwald ◽  
Michael P. Anderson

Abstract Fast protein liquid chromatography (anion exchange) was used to separate glutathione S-transferase isozymes in nontreated etiolated maize shoots and those treated with the herbi­cide safener CGA -1542814-(dichloroacetyl)-3,4-dihydro-3-methyl-2 H-1 ,4-benzoxazine. Non­treated shoots contained isozymes active with the following substrates: trans-cinnamic acid (1 isozyme), atrazine (3 isozymes), 1-chloro-2,4-dinitrobenzene (1 isozyme), metolachlor (2 isozymes) and the sulfoxide derivative of S-ethyl dipropylcarbamothioate (2 isozymes). Pre­treatment of shoots with the safener CGA -154281 (1 μM) had no effect on the activity of the isozymes selective for trans-cinnamic acid and atrazine but increased the activity of the constitutively-expressed isozymes that exhibit activity with 1-chloro-2,4-dinitrobenzene, metola­chlor and the sulfoxide derivative of S-ethyl dipropylcarbamothioate. The safener pretreat­ment also caused the appearance of one new isozyme active with 1-chloro-2,4-dinitrobenzene and one new isozyme active with metolachlor. The results illustrate the complexity of gluta­thione S-transferase activity in etiolated maize shoots, and the selective enhancement of gluta­thione S-transferase isozymes by the safener CGA -154281.


2010 ◽  
Vol 12 (2) ◽  
pp. 108-122 ◽  
Author(s):  
Masaaki Fukushima ◽  
Beili Wu ◽  
Hidetoshi Ibe ◽  
Keiji Wakai ◽  
Eiichi Sugiyama ◽  
...  

1989 ◽  
Vol 264 (3) ◽  
pp. 737-744 ◽  
Author(s):  
P Steinberg ◽  
H Schramm ◽  
L Schladt ◽  
L W Robertson ◽  
H Thomas ◽  
...  

The distribution and inducibility of cytosolic glutathione S-transferase (EC 2.5.1.18) and glutathione peroxidase (EC 1.11.1.19) activities in rat liver parenchymal, Kupffer and endothelial cells were studied. In untreated rats glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and 4-hydroxynon-2-trans-enal as substrates was 1.7-2.2-fold higher in parenchymal cells than in Kupffer and endothelial cells, whereas total, selenium-dependent and non-selenium-dependent glutathione peroxidase activities were similar in all three cell types. Glutathione S-transferase isoenzymes in parenchymal and non-parenchymal cells isolated from untreated rats were separated by chromatofocusing in an f.p.l.c. system: all glutathione S-transferase isoenzymes observed in the sinusoidal lining cells were also detected in the parenchymal cells, whereas Kupffer and endothelial cells lacked several glutathione S-transferase isoenzymes present in parenchymal cells. At 5 days after administration of Arocolor 1254 glutathione S-transferase activity was only enhanced in parenchymal cells; furthermore, selenium-dependent glutathione peroxidase activity decreased in parenchymal and non-parenchymal cells. At 13 days after a single injection of Aroclor 1254 a strong induction of glutathione S-transferase had taken place in all three cell types, whereas selenium-dependent glutathione peroxidase activity remained unchanged (endothelial cells) or was depressed (parenchymal and Kupffer cells). Hence these results clearly establish that glutathione S-transferase and glutathione peroxidase are differentially regulated in rat liver parenchymal as well as non-parenchymal cells. The presence of glutathione peroxidase and several glutathione S-transferase isoenzymes capable of detoxifying a variety of compounds in Kupffer and endothelial cells might be crucial to protect the liver from damage by potentially hepatotoxic substances.


1997 ◽  
Vol 31 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Galal E. M. D. Ghazaly ◽  
Madeha M. Zakahary ◽  
Mohamed A. A. El-aziz ◽  
Ahmed A. E. M. Mahmoud ◽  
Pablo Carretero ◽  
...  

2015 ◽  
Vol 10 (3) ◽  
pp. 117-124
Author(s):  
Kuldeep Kaushik ◽  
Pawan Kumar Mittal ◽  
Natwar Raj Kalla

Placenta ◽  
1986 ◽  
Vol 7 (2) ◽  
pp. 155-162 ◽  
Author(s):  
C. Di Ilio ◽  
P. Sacchetta ◽  
G. Del Boccio ◽  
E. Casalone ◽  
G. Polidoro

Sign in / Sign up

Export Citation Format

Share Document