Certain oscillatory integrals on unit square and their applications

2008 ◽  
Vol 51 (10) ◽  
pp. 1895-1903 ◽  
Author(s):  
DaShan Fan ◽  
HuoXiong Wu
2010 ◽  
Vol 6 (1) ◽  
pp. 49-59
Author(s):  
Jiecheng Chen ◽  
Dashan Fan ◽  
Huoxiong Wu ◽  
Xiangrong Zhu

2021 ◽  
pp. 1-11
Author(s):  
STEPHEN JACKSON ◽  
BILL MANCE ◽  
SAMUEL ROTH

Abstract We consider the complexity of special $\alpha $ -limit sets, a kind of backward limit set for non-invertible dynamical systems. We show that these sets are always analytic, but not necessarily Borel, even in the case of a surjective map on the unit square. This answers a question posed by Kolyada, Misiurewicz, and Snoha.


2020 ◽  
Vol 23 (6) ◽  
pp. 1663-1677
Author(s):  
Michael Ruzhansky ◽  
Berikbol T. Torebek

Abstract The paper is devoted to study multidimensional van der Corput-type estimates for the intergrals involving Mittag-Leffler functions. The generalisation is that we replace the exponential function with the Mittag-Leffler-type function, to study multidimensional oscillatory integrals appearing in the analysis of time-fractional evolution equations. More specifically, we study two types of integrals with functions E α, β (i λ ϕ(x)), x ∈ ℝ N and E α, β (i α λ ϕ(x)), x ∈ ℝ N for the various range of α and β. Several generalisations of the van der Corput-type estimates are proved. As an application of the above results, the Cauchy problem for the multidimensional time-fractional Klein-Gordon and time-fractional Schrödinger equations are considered.


2000 ◽  
Vol 9 (6) ◽  
pp. 489-511 ◽  
Author(s):  
JOSEP DÍAZ ◽  
MATHEW D. PENROSE ◽  
JORDI PETIT ◽  
MARÍA SERNA

This work deals with convergence theorems and bounds on the cost of several layout measures for lattice graphs, random lattice graphs and sparse random geometric graphs. Specifically, we consider the following problems: Minimum Linear Arrangement, Cutwidth, Sum Cut, Vertex Separation, Edge Bisection and Vertex Bisection. For full square lattices, we give optimal layouts for the problems still open. For arbitrary lattice graphs, we present best possible bounds disregarding a constant factor. We apply percolation theory to the study of lattice graphs in a probabilistic setting. In particular, we deal with the subcritical regime that this class of graphs exhibits and characterize the behaviour of several layout measures in this space of probability. We extend the results on random lattice graphs to random geometric graphs, which are graphs whose nodes are spread at random in the unit square and whose edges connect pairs of points which are within a given distance. We also characterize the behaviour of several layout measures on random geometric graphs in their subcritical regime. Our main results are convergence theorems that can be viewed as an analogue of the Beardwood, Halton and Hammersley theorem for the Euclidean TSP on random points in the unit square.


Sign in / Sign up

Export Citation Format

Share Document