scholarly journals Tail asymptotic expansions for L-statistics

2014 ◽  
Vol 57 (10) ◽  
pp. 1993-2012 ◽  
Author(s):  
Enkelejd Hashorva ◽  
ChengXiu Ling ◽  
ZuoXiang Peng
2007 ◽  
Vol 44 (02) ◽  
pp. 285-294 ◽  
Author(s):  
Qihe Tang

We study the tail behavior of discounted aggregate claims in a continuous-time renewal model. For the case of Pareto-type claims, we establish a tail asymptotic formula, which holds uniformly in time.


2021 ◽  
Vol 174 (1) ◽  
Author(s):  
Amirlan Seksenbayev

AbstractWe study two closely related problems in the online selection of increasing subsequence. In the first problem, introduced by Samuels and Steele (Ann. Probab. 9(6):937–947, 1981), the objective is to maximise the length of a subsequence selected by a nonanticipating strategy from a random sample of given size $n$ n . In the dual problem, recently studied by Arlotto et al. (Random Struct. Algorithms 49:235–252, 2016), the objective is to minimise the expected time needed to choose an increasing subsequence of given length $k$ k from a sequence of infinite length. Developing a method based on the monotonicity of the dynamic programming equation, we derive the two-term asymptotic expansions for the optimal values, with $O(1)$ O ( 1 ) remainder in the first problem and $O(k)$ O ( k ) in the second. Settling a conjecture in Arlotto et al. (Random Struct. Algorithms 52:41–53, 2018), we also design selection strategies to achieve optimality within these bounds, that are, in a sense, best possible.


Author(s):  
OLGA BALKANOVA ◽  
DMITRY FROLENKOV ◽  
MORTEN S. RISAGER

Abstract The Zagier L-series encode data of real quadratic fields. We study the average size of these L-series, and prove asymptotic expansions and omega results for the expansion. We then show how the error term in the asymptotic expansion can be used to obtain error terms in the prime geodesic theorem.


1997 ◽  
Vol 29 (02) ◽  
pp. 374-387 ◽  
Author(s):  
V. Čekanavičius

The accuracy of the Normal or Poisson approximations can be significantly improved by adding part of an asymptotic expansion in the exponent. The signed-compound-Poisson measures obtained in this manner can be of the same structure as the Poisson distribution. For large deviations we prove that signed-compound-Poisson measures enlarge the zone of equivalence for tails.


Sign in / Sign up

Export Citation Format

Share Document