scholarly journals Infinite Series Asymptotic Expansions for Decaying Solutions of Dissipative Differential Equations with Non-smooth Nonlinearity

2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Dat Cao ◽  
Luan Hoang ◽  
Thinh Kieu
2015 ◽  
Vol 4 (4) ◽  
pp. 481
Author(s):  
Kekana M.C ◽  
Shatalov M.Y ◽  
Moshokoa S.P

In this paper, Volterra Integro differential equations are solved using the Adomian decomposition method. The solutions are obtained in form of infinite series and compared to Runge-Kutta4 algorithm. The technique is described and illustrated with examples; numerical results are also presented graphically. The software used in this study is mathematica10.


1980 ◽  
Vol 47 (4) ◽  
pp. 861-865 ◽  
Author(s):  
G. V. Ranjan ◽  
C. R. Steele

Asymptotic expansions for self-equilibrating edge loading are derived in terms of exponential functions, from which formulas for the stiffness and flexibility edge influence coefficients are obtained, which include the quadratic nonlinear terms. The flexibility coefficients agree with those previously obtained by Van Dyke for the pressurized spherical shell and provide the generalization to general geometry and loading. In addition, the axial displacement is obtained. The nonlinear terms in the differential equations can be identified as “prestress” and “quadratic rotation.” To assess the importance of the latter, the problem of a pressurized spherical cap with roller supported edges is considered. Results show that whether the rotation at the edge is constrained or not, the quadratic rotation terms do not have a large effect on the axial displacement. The effect will be large for problems with small membrane stresses.


2021 ◽  
Vol 5 (1) ◽  
pp. 51-63
Author(s):  
Mawia Osman ◽  
◽  
Zengtai Gong ◽  
Altyeb Mohammed Mustafa ◽  
◽  
...  

In this paper, the reduced differential transform method (RDTM) is applied to solve fuzzy nonlinear partial differential equations (PDEs). The solutions are considered as infinite series expansions which converge rapidly to the solutions. Some examples are solved to illustrate the proposed method.


Author(s):  
Safia Meftah

The question discussed in this study concerns one of the most helpful approximation methods, namely, the expansion of a solution of a differential equation in a series in powers of a small parameter. We used the Lindstedt-Poincaré perturbation method to construct a solution closer to uniformly valid asymptotic expansions for periodic solutions of second-order nonlinear differential equations.


Sign in / Sign up

Export Citation Format

Share Document