On the reconstruction of media inhomogeneity by inverse wave scattering model

2017 ◽  
Vol 60 (10) ◽  
pp. 1825-1836 ◽  
Author(s):  
Min Zhong ◽  
JiJun Liu
2007 ◽  
Vol 53 (182) ◽  
pp. 473-478 ◽  
Author(s):  
Kenichi Matsuoka ◽  
Throstur Thorsteinsson ◽  
Helgi Björnsson ◽  
Edwin D. Waddington

AbstractColinear-polarized 5 MHz radar profiling data were obtained on Mýrdalsjökull, a temperate glacier in Iceland. Radar transects, and therefore polarization planes, were aligned approximately parallel, transverse and oblique to the ice flow direction. Echoes from the shallower half to two-thirds of the ice were 10–20dB stronger on the oblique and longitudinal transects than those on the transverse transects. Anisotropy as a function of depth is clearly seen at the sites where the transects cross. Strong scattering on longitudinal transects apparently caused extinction of a radar-reflecting layer that was continuously profiled on the transverse transects. A radio-wave scattering model shows that scattering from a longitudinal water-filled conduit parallel to the glacier surface can explain the observed azimuthal variations of the echo. We conclude that low-frequency (~MHz) radio waves can help to characterize englacial water regimes.


Radio Science ◽  
1990 ◽  
Vol 25 (1) ◽  
pp. 9-18 ◽  
Author(s):  
K. Sarabandi ◽  
F. T. Ulaby ◽  
T. B. A. Senior

2020 ◽  
Author(s):  
Gunter Stober ◽  
Peter Brown ◽  
Carsten Schult ◽  
Rob Weryk ◽  
Margaret Campbell-Brown ◽  
...  

<p>There is a continuous flux of meteoroids entering the Earth's atmosphere, which are decelerated and heated by collisions with atmospheric molecules, and, depending on the meteoroid kinetic energy, they vaporize and form an ambipolar diffusing plasma trail, which is easily detectable using radar remote sensing. Specular meteor observations are a widely used radar technique to measure winds at the Mesosphere and Lower Thermosphere (MLT). The altitude dependent lifetime (decay time) of the meteor plasma columns provides valuable information about the mean temperature of the atmosphere.  Part of the success of these systems is based on the efficient scattering process compared to meteor head echoes.</p><p>Here we present observations with the Middle Atmosphere Alomar Radar System to detect the faintest observable meteors using the specular geometry, but a focused beam with a beamwidth of 3.6° and the full power of 866kW of the system. We compare our observations to an orbital dynamics model of JFC comets and derive a meteor velocity distribution for the observed population.</p><p>Further, we performed extensive modeling using a full-wave scattering model based on the model presented in Poulter and Baggaley, 1977. We conducted extensive simulations with the full-wave scattering model to investigate how different plasma distributions would affect the detectability of the meteoric plasma cylinders considering the initial trail radius, diffusion, and electron line density. The obtained reflection coefficients are validated with the triple frequency CMOR (Canadian Meteor Orbit Radar) measurements convolving them with the Fresnel integrals. Our results indicate that the plasma distribution can significantly alter the detectability. Further, the model shows that the observed decay time depends on the polarization of the transmitted wave relative to the meteor trajectory, which also revealed resonance effects for certain critical plasma frequencies. </p>


2020 ◽  
Vol 10 (9) ◽  
pp. 3129
Author(s):  
Sanggoo Kang ◽  
Yin Chao Wu ◽  
Suyun Ham

In this study, singular integral solutions were studied to investigate scattering of Rayleigh waves by subsurface cracks. Defining a wave scattering model by objects, such as cracks, still can be quite a challenge. The model’s analytical solution uses five different numerical integration methods: (1) the Gauss–Legendre quadrature, (2) the Gauss–Chebyshev quadrature, (3) the Gauss–Jacobi quadrature, (4) the Gauss–Hermite quadrature and (5) the Gauss–Laguerre quadrature. The study also provides an efficient dynamic finite element analysis to demonstrate the viability of the wave scattering model with an optimized model configuration for wave separation. The obtained analytical solutions are verified with displacement variation curves from the computational simulation by defining the correlation of the results. A novel, verified model, is proposed to provide variations in the backward and forward scattered surface wave displacements calculated by different frequencies and geometrical crack parameters. The analytical model can be solved by the Gauss–Legendre quadrature method, which shows the significantly correlated displacement variation with the FE simulation result. Ultimately, the reliable analytic model can provide an efficient approach to solving the parametric relationship of wave scattering.


1999 ◽  
Vol 11 (1) ◽  
pp. 117-135
Author(s):  
P. Dineva ◽  
D. Gross ◽  
T. Rangelov

Sign in / Sign up

Export Citation Format

Share Document