scattering model
Recently Published Documents


TOTAL DOCUMENTS

1041
(FIVE YEARS 150)

H-INDEX

49
(FIVE YEARS 5)

2021 ◽  
Vol 150 (6) ◽  
pp. 4353-4361
Author(s):  
Elizabeth Weidner ◽  
Thomas C. Weber

2021 ◽  
Author(s):  
Haoyang Li ◽  
Sining Li ◽  
Peng Jiang ◽  
Jianfeng Sun ◽  
Shihang Guo ◽  
...  

Author(s):  
Guanghai Fei ◽  
Cesar Parra-Cabrera ◽  
Kuo Zhong ◽  
Max L. Tietze ◽  
Koen Clays ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7748
Author(s):  
Xiangchen Liu ◽  
Yun Shao ◽  
Long Liu ◽  
Kun Li ◽  
Jingyuan Wang ◽  
...  

A microwave scattering model is a powerful tool for determining relationships between vegetation parameters and backscattering characteristics. The crown shape of the vegetation canopy is an important parameter in forestry and affects the microwave scattering modeling results. However, there are few numerical models or methods to describe the relationships between crown shapes and backscattering features. Using the Modified Tor Vergata Model (MTVM), a microwave scattering model based on the Matrix Doubling Algorithm (MDA), we quantitatively characterized the effects of crown shape on the microwave backscattering coefficients of the vegetation canopy. FEKO was also used as a computational electromagnetic method to make a complement and comparison with MTVM. In a preliminary experiment, the backscattering coefficients of two ideal vegetation canopies with four representative crown shapes (cylinder, cone, inverted cone and ellipsoid) were simulated: MTVM simulations were performed for the L (1.2 GHz), C (5.3 GHz) and X (9.6 GHz) bands in fully polarimetric mode, and FEKO simulations were carried out for the C (5.3 GHz) band at VV and VH polarization. The simulation results show that, for specific input parameters, the mean relative differences in backscattering coefficients due to variations in crown shape are as high as 127%, which demonstrates that the crown shape has a non-negligible influence on microwave backscattering coefficients of the vegetation canopy. In turn, this also suggests that investigation on effects of plant crown shape on microwave backscattering coefficients may have the potential to improve the accuracy of vegetation microwave scattering models, especially in canopies where volume scattering is the predominant mechanism.


2021 ◽  
Vol 13 (22) ◽  
pp. 4593
Author(s):  
Matías Ernesto Barber ◽  
David Sebastián Rava ◽  
Carlos López-Martínez

This research aims at modeling the microwave backscatter of corn fields by coupling an incoherent, interaction-based scattering model with a semi-empirical bulk vegetation dielectric model. The scattering model is fitted to co-polarized phase difference measurements over several corn fields imaged with fully polarimetric synthetic aperture radar (SAR) images with incidence angles ranging from 20° to 60°. The dataset comprised two field campaigns, one over Canada with the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR, 1.258 GHz) and the other one over Argentina with Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar (PALSAR-2) (ALOS-2/PALSAR-2, 1.236 GHz), totaling 60 data measurements over 28 grown corn fields at peak biomass with stalk gravimetric moisture larger than 0.8 g/g. Co-polarized phase differences were computed using a maximum likelihood estimation technique from each field’s measured speckled sample histograms. After minimizing the difference between the model and data measurements for varying incidence angles by a nonlinear least-squares fitting, well agreement was found with a root mean squared error of 24.3° for co-polarized phase difference measurements in the range of −170.3° to −19.13°. Model parameterization by stalk gravimetric moisture instead of its complex dielectric constant is also addressed. Further validation was undertaken for the UAVSAR dataset on earlier corn stages, where overall sensitivity to stalk height, stalk gravimetric moisture, and stalk area density agreed with ground data, with the sensitivity to stalk diameter being the weakest. This study provides a new perspective on the use of co-polarized phase differences in retrieving corn stalk features through inverse modeling techniques from space.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Zhang ◽  
Zhi Lu ◽  
Jiamin Wu ◽  
Xing Lin ◽  
Dong Jiang ◽  
...  

AbstractQuantitative volumetric fluorescence imaging at high speed across a long term is vital to understand various cellular and subcellular behaviors in living organisms. Light-field microscopy provides a compact computational solution by imaging the entire volume in a tomographic way, while facing severe degradation in scattering tissue or densely-labelled samples. To address this problem, we propose an incoherent multiscale scattering model in a complete space for quantitative 3D reconstruction in complicated environments, which is called computational optical sectioning. Without the requirement of any hardware modifications, our method can be generally applied to different light-field schemes with reduction in background fluorescence, reconstruction artifacts, and computational costs, facilitating more practical applications of LFM in a broad community. We validate the superior performance by imaging various biological dynamics in Drosophila embryos, zebrafish larvae, and mice.


2021 ◽  
Vol 13 (21) ◽  
pp. 4417
Author(s):  
Letian Wang ◽  
Min Zhang ◽  
Jiong Liu

A comprehensive electromagnetic scattering model for ship wakes on the sea surface is proposed to study the synthetic aperture radar (SAR) imagery for ship wakes. Our model considers a coupling of various wave systems, including Kelvin wake, turbulent wake, and the ocean ambient waves induced by the local wind. The fluid–structure coupling between the ship and the water surface is considered using the Reynolds–averaged Navier–Stokes (RANS) equation, and the wave–current effect between the ship wake and wind waves is considered using the wave modulation model. The scattering model can better describe the interaction of the ship wakes on sea surface and illustrates well the features of the ship wakes with local wind waves in SAR images.


2021 ◽  
pp. 1-16
Author(s):  
Runze Song ◽  
Zhaohui Liu ◽  
Chao Wang

As an advanced machine vision task, traffic sign recognition is of great significance to the safe driving of autonomous vehicles. Haze has seriously affected the performance of traffic sign recognition. This paper proposes a dehazing network, including multi-scale residual blocks, which significantly affects the recognition of traffic signs in hazy weather. First, we introduce the idea of residual learning, design the end-to-end multi-scale feature information fusion method. Secondly, the study used subjective visual effects and objective evaluation metrics such as Visibility Index (VI) and Realness Index (RI) based on the characteristics of the real-world environment to compare various traditional dehazing and deep learning dehazing method with good performance. Finally, this paper combines image dehazing and traffic sign recognition, using the algorithm of this paper to dehaze the traffic sign images under real-world hazy weather. The experiments show that the algorithm in this paper can improve the performance of traffic sign recognition in hazy weather and fulfil the requirements of real-time image processing. It also proves the effectiveness of the reformulated atmospheric scattering model for the dehazing of traffic sign images.


Information ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 412
Author(s):  
Emanuele Colica ◽  
Antonella Antonazzo ◽  
Rita Auriemma ◽  
Luigi Coluccia ◽  
Ilaria Catapano ◽  
...  

In this contribution, we present some results achieved in the archaeological site of Le Cesine, close to Lecce, in southern Italy. The investigations have been performed in a site close to the Adriatic Sea, only slightly explored up to now, and where the presence of an ancient Roman harbour is alleged on the basis of remains visible above all under the current sea level. This measurement campaign has been performed in the framework of a short-term scientific mission (STSM) performed in the framework of the European Cost Action 17131 (acronym SAGA), and has been aimed to identify possible points where future localized excavation might and hopefully will be performed in the next few years. Both a traditional elaboration and an innovative data processing based on a linear inverse scattering model have been performed on the data.


Sign in / Sign up

Export Citation Format

Share Document