Short-term power load forecasting using integrated methods based on long short-term memory

2020 ◽  
Vol 63 (4) ◽  
pp. 614-624
Author(s):  
WenJie Zhang ◽  
Jian Qin ◽  
Feng Mei ◽  
JunJie Fu ◽  
Bo Dai ◽  
...  
Author(s):  
Hla U May Marma ◽  
M. Tariq Iqbal ◽  
Christopher Thomas Seary

A highly efficient deep learning method for short-term power load forecasting has been developed recently. It is a challenge to improve forecasting accuracy, as power consumption data at the individual household level is erratic for variable weather conditions and random human behaviour.  In this paper, a robust short-term power load forecasting method is developed based on a Bidirectional long short-term memory (Bi-LSTM) and long short-term memory (LSTM) neural network with stationary wavelet transform (SWT). The actual power load data is classified according to seasonal power usage behaviour. For each load classification, short-term power load forecasting is performed using the developed method. A set of lagged power load data vectors is generated from the historical power load data, and SWT decomposes the vectors into sub-components. A Bi-LSTM neural network layer extracts features from the sub-components, and an LSTM layer is used to forecast the power load from each extracted feature. A dropout layer with fixed probability is added after the Bi-LSTM and LSTM layers to bolster the forecasting accuracy. In order to evaluate the accuracy of the proposed model, it is compared against other developed short-term load forecasting models which are subjected to two seasonal load classifications.


Author(s):  
Anindita Satria Surya ◽  
Musa Partahi Marbun ◽  
K.G.H. Mangunkusumo ◽  
Muhammad Ridwan

2020 ◽  
Vol 10 (18) ◽  
pp. 6489
Author(s):  
Namrye Son ◽  
Seunghak Yang ◽  
Jeongseung Na

Forecasting domestic and foreign power demand is crucial for planning the operation and expansion of facilities. Power demand patterns are very complex owing to energy market deregulation. Therefore, developing an appropriate power forecasting model for an electrical grid is challenging. In particular, when consumers use power irregularly, the utility cannot accurately predict short- and long-term power consumption. Utilities that experience short- and long-term power demands cannot operate power supplies reliably; in worst-case scenarios, blackouts occur. Therefore, the utility must predict the power demands by analyzing the customers’ power consumption patterns for power supply stabilization. For this, a medium- and long-term power forecasting is proposed. The electricity demand forecast was divided into medium-term and long-term load forecast for customers with different power consumption patterns. Among various deep learning methods, deep neural networks (DNNs) and long short-term memory (LSTM) were employed for the time series prediction. The DNN and LSTM performances were compared to verify the proposed model. The two models were tested, and the results were examined with the accuracies of the six most commonly used evaluation measures in the medium- and long-term electric power load forecasting. The DNN outperformed the LSTM, regardless of the customer’s power pattern.


Sign in / Sign up

Export Citation Format

Share Document