A multi-objective power flow optimization control strategy for a power split plug-in hybrid electric vehicle using game theory

Author(s):  
WeiDa Wang ◽  
WeiQi Wang ◽  
Chao Yang ◽  
Cheng Liu ◽  
LiuQuan Yang ◽  
...  
Author(s):  
Hui Liu ◽  
Xunming Li ◽  
Lijin Han ◽  
Weida Wang ◽  
Changle Xiang

With the continuous development of hybrid vehicle control technology, great progress has been made in the research of multi-power flow collaborative control. Due to the internal delay link of each power component, the role of energy storage element, and the limitation of electric power in the whole system, the inevitable delay characteristic of state transfer is caused. Therefore, the speed of multi-power flow control torque coordinated response of hybrid vehicles needs to be improved. The dual-mode power-split hybrid electric vehicle (DMPS-HEV) overall structure and working modes are analyzed, by adopting the combination of theory and experiment method. In order to solve the problem that the power components of dual-mode power-split hybrid electric vehicle cannot follow the optimal control command of the upper energy management strategy quickly due to the engine response delay, thus affecting the control effect of the upper energy management strategy. The research on torque coordination control strategy is carried out, the reference model of electromechanical composite drive is established, and the model reference adaptive coordination control strategy based on Lyapunov stability theory is proposed. The results show that the proposed model reference adaptive torque coordinated control strategy significantly improves the effect of engine response delay on the optimization effect of energy management strategy, and can achieve the control effect of the optimal control strategy of 93.58%. The test platform of the dual-mode power-split hybrid electric vehicle was built. The control system was built based on the rapid control prototype, and the data acquisition system was built based on the NI data acquisition module. The coordinated control strategy of the dual-mode power-split hybrid electric vehicle power system proposed in this paper was verified through the bench test to significantly improve the vehicle fuel economy and the real-time performance of the control strategy, which has a good practical value


Author(s):  
Dengfeng Shen ◽  
Clemens Gühmann ◽  
Tong Zhang ◽  
Xizhen Dong

Due to the direct connection between the engine and the compound power split hybrid transmission (CPSHT) in hybrid electric vehicle (HEV), engine ripple torque (ERT) can result in obvious jerks in engine starting process (ESP). In order to improve the riding comfort, two wet clutches are mounted in this novel CPSHT. This research developed a new coordinated control strategy and its effectiveness was verified in simulation. Firstly, the mechanical and hydraulic parts of the CPSHT were introduced, and the riding comfort problem during ESP in primary design was illustrated. Secondly, the dynamic plant model including ERT, driveline model and clutch torque was deduced. Thirdly, a coordinated control strategy was designed to determine the target engine torque, motor torque, clutch torque and the moment of fuel injection. A Kalman filter based clutch torque estimator was applied with the help of electric motors information. The simulation result indicates that proposed coordinated control strategy can indeed suppress vehicle jerk and improve the riding comfort in ESP.


2018 ◽  
Vol 8 (12) ◽  
pp. 2494 ◽  
Author(s):  
Zheng Chen ◽  
Hengjie Hu ◽  
Yitao Wu ◽  
Renxin Xiao ◽  
Jiangwei Shen ◽  
...  

This paper proposes an energy management strategy for a power-split plug-in hybrid electric vehicle (PHEV) based on reinforcement learning (RL). Firstly, a control-oriented power-split PHEV model is built, and then the RL method is employed based on the Markov Decision Process (MDP) to find the optimal solution according to the built model. During the strategy search, several different standard driving schedules are chosen, and the transfer probability of the power demand is derived based on the Markov chain. Accordingly, the optimal control strategy is found by the Q-learning (QL) algorithm, which can decide suitable energy allocation between the gasoline engine and the battery pack. Simulation results indicate that the RL-based control strategy could not only lessen fuel consumption under different driving cycles, but also limit the maximum discharge power of battery, compared with the charging depletion/charging sustaining (CD/CS) method and the equivalent consumption minimization strategy (ECMS).


Sign in / Sign up

Export Citation Format

Share Document