gasoline engine
Recently Published Documents





Chun Xia ◽  
Tingyu Zhao ◽  
Junhua Fang ◽  
Lei Zhu ◽  
Zhen Huang

2022 ◽  
Vol 2160 (1) ◽  
pp. 012008
He Huang ◽  
Kai Yang ◽  
Xiaomei Yang

Abstract When checking and cleaning whether there is carbon deposit in the cylinder of gasoline engine, it is often time-consuming and laborious, and the process is complicated. Once the disassembly and assembly is not in place, its service life will be affected. When cleaning with carburizing agent and cleaning agent, it is difficult to fully contact with the cylinder wall, so the cleaning effect is poor and it is easy to leave its chemical composition in the engine. In this paper, some common ways of engine cylinder cleaning are studied, and a device for detecting and cleaning carbon deposition in gasoline engine cylinder is designed. The purpose is to provide a new convenient, simple and practical method for detecting and cleaning carbon deposition in automobile engine cylinder in the current market.

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122138
Changling Feng ◽  
Yuanwang Deng ◽  
Lehan Chen ◽  
Wei Han ◽  
Jiaqiang E ◽  

2021 ◽  
Vol 21 (4) ◽  
pp. 259-273
Abed Al-Khadhim M. Hassan ◽  
Sadeq Abdul-Azeez Jassam

The aim of the present work is to investigate the influence of adding some ketone compounds on the performance, emissions, heat balance and exhaust gas temperature of spark ignition engine. The ketone used in this study is cyclohexanone (C6H10O). This ketone has been added to the base fuel (gasoline) with three concentration ranges (3, 6 and 9%) respectively. All experimental tests were carried out on gasoline engine type (Nissan QG18DE), four cylinders, 4-stroke, direct injection, with compression ratio (9.5:1). The acquired results showed that adding of ketones affect the physical properties of gasoline. Where the density changed from (710 kg/m3) for net gasoline to (740.8 kg/m3) for cyclohexanone at adding ratio of (9%). The octane number also increased from (86) for pure gasoline to (97.7) for fuel with 9% cyclohexanone. The calorific value will be decrease from (43000 kJ/kg) for gasoline to (42077.5) for cyclohexanone at adding ratio of (9%). The addition of ketones improves the emissions characteristic of engine. The best reduction of (UHC, CO_2, CO and NOx) was (49.04, 22.43, 35.02 and 42.14%) recorded by cyclohexanone addition at ratio of (9%). In the case of performance, all parameters of performance improved by adding ketones. The brake specific fuel consumption reduced by (8.9%) by adding (9%) of cyclohexanone which recorded as the best reduction through all types. The best increment of brake power, brake thermal efficiency, brake mean effective pressure and volumetric efficiency was (17.3, 8.98, 17.25 and 12.7%) is achieved by adding (9%) of cyclohexanone. Also, the exhaust gas temperature will be increase by adding ketones. The percentage increasing of exhaust gas temperature was (28.31%) recorded by cyclohexanone addition at ratio of (9%). In the case of heat balance, the best increment of total heat internal energy was (6.59) at (9%) of cyclohexanone.  

2021 ◽  
Vol 10 (2) ◽  
A. Yudi Eka Risano ◽  
Herry Wardono ◽  
Gunawan Poniton R.P. Sihombing

Bioethanol is ethanol made from plants such as cassava, sugarcane, sago, which are processed through hydrolysis, fermentation, distillation and dehydration processes. Lampung Province is one of the largest producers of cassava in Indonesia, with the total productivity of 5,451,312 tons in 2017, and 6,683,758 tons in 2018 or there was an increase of 22,61% compared to 2017. From this data, it is possible to produce bioethanol, where every 1 kg of cassava can produce 0,106 liters of bioethanol. This is what underlies this research to investigate the effect of blending bioethanol of 99% with pertamax and bioethanol on the engine torque. Blending bioethanol of 99% can homogeusly mix. The engine used in this study is a Kohler gasoline engine equipped with a VDAS (Versatile Data Accession System) instrument unit in determining the parameters of engine performance. The blending of bioethanol of 99% as big as 14% (E14) gave the highest value of torque at 1 rotation of dynamometer valve opening and engine speed of 2000 rpm.

Sign in / Sign up

Export Citation Format

Share Document