Path loss model based on cluster at 28 GHz in the indoor and outdoor environments

2017 ◽  
Vol 60 (8) ◽  
Author(s):  
Lai Zhou ◽  
Limin Xiao ◽  
Zhi Yang ◽  
Jiahui Li ◽  
Jin Lian ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 382
Author(s):  
Zanru Yang ◽  
Le Chung Tran ◽  
Farzad Safaei

In this paper, portable transceivers with micro-controllers and radio frequency modules are developed to measure the received signal strength, path loss, and thus the distance between the human ankles for both indoor and outdoor environments. By comparing the experimental results and the theoretical model, a path loss model between transceivers attached to the subject’s ankles is derived. With the developed experimental path loss model, the step length can be measured relatively accurately, despite the imperfections of hardware devices, with the distance errors of a centimeter level. This paper, therefore, helps address the need for a distance measurement method that has fewer health concerns, is accurate, and is less affected by occlusions and confined spaces. Our findings possibly lay a foundation for some important applications, such as the measurement of gait speed and localization of the human body parts, in wireless body area networks.


2019 ◽  
Vol E102.B (8) ◽  
pp. 1676-1688 ◽  
Author(s):  
Mitsuki NAKAMURA ◽  
Motoharu SASAKI ◽  
Wataru YAMADA ◽  
Naoki KITA ◽  
Takeshi ONIZAWA ◽  
...  

Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


Sign in / Sign up

Export Citation Format

Share Document