indoor and outdoor environments
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 125)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 8 (2) ◽  
pp. 1-31
Author(s):  
Chrysovalantis Anastasiou ◽  
Constantinos Costa ◽  
Panos K. Chrysanthis ◽  
Cyrus Shahabi ◽  
Demetrios Zeinalipour-Yazti

The fight against the COVID-19 pandemic has highlighted the importance and benefits of recommending paths that reduce the exposure to and the spread of the SARS-CoV-2 coronavirus by avoiding crowded indoor or outdoor areas. Existing path discovery techniques are inadequate for coping with such dynamic and heterogeneous (indoor and outdoor) environments—they typically find an optimal path assuming a homogeneous and/or static graph, and hence they cannot be used to support contact avoidance. In this article, we pose the need for Mobile Contact Avoidance Navigation and propose ASTRO ( A ccessible S patio- T emporal R oute O ptimization), a novel graph-based path discovering algorithm that can reduce the risk of COVID-19 exposure by taking into consideration the congestion in indoor spaces. ASTRO operates in an A * manner to find the most promising path for safe movement within and across multiple buildings without constructing the full graph. For its path finding, ASTRO requires predicting congestion in corridors and hallways. Consequently, we propose a new grid-based partitioning scheme combined with a hash-based two-level structure to store congestion models, called CM-Structure , which enables on-the-fly forecasting of congestion in corridors and hallways. We demonstrate the effectiveness of ASTRO and the accuracy of CM-Structure ’s congestion models empirically with realistic datasets, showing up to one order of magnitude reduction in COVID-19 exposure.


Chemosphere ◽  
2022 ◽  
Vol 289 ◽  
pp. 133154
Author(s):  
Andreja Stojić ◽  
Gordana Jovanović ◽  
Svetlana Stanišić ◽  
Snježana Herceg Romanić ◽  
Andrej Šoštarić ◽  
...  

2021 ◽  
Vol 35 (6) ◽  
pp. 437-446
Author(s):  
Selvaraj Karupusamy ◽  
Sundaram Maruthachalam ◽  
Suresh Mayilswamy ◽  
Shubham Sharma ◽  
Jujhar Singh ◽  
...  

Numerous challenges are usually faced during the design and development of an autonomous mobile robot. Path planning and navigation are two significant areas in the control of autonomous mobile robots. The computation of odometry plays a major role in developing navigation systems. This research aims to develop an effective method for the computation of odometry using low-cost sensors, in the differential drive mobile robot. The controller acquires the localization of the robot and guides the path to reach the required target position using the calculated odometry and its created new two-dimensional mapping. The proposed method enables the determination of the global position of the robot through odometry calibration within the indoor and outdoor environment using Graphical Simulation software.


2021 ◽  
Vol 14 (1) ◽  
pp. 27
Author(s):  
Changqiang Wang ◽  
Aigong Xu ◽  
Xin Sui ◽  
Yushi Hao ◽  
Zhengxu Shi ◽  
...  

Seamless positioning systems for complex environments have been a popular focus of research on positioning safety for autonomous vehicles (AVs). In particular, the seamless high-precision positioning of AVs indoors and outdoors still poses considerable challenges and requires continuous, reliable, and high-precision positioning information to guarantee the safety of driving. To obtain effective positioning information, multiconstellation global navigation satellite system (multi-GNSS) real-time kinematics (RTK) and an inertial navigation system (INS) have been widely integrated into AVs. However, integrated multi-GNSS and INS applications cannot provide effective and seamless positioning results for AVs in indoor and outdoor environments due to limited satellite availability, multipath effects, frequent signal blockages, and the lack of GNSS signals indoors. In this contribution, multi-GNSS-tightly coupled (TC) RTK/INS technology is developed to solve the positioning problem for a challenging urban outdoor environment. In addition, ultrawideband (UWB)/INS technology is developed to provide accurate and continuous positioning results in indoor environments, and INS and map information are used to identify and eliminate UWB non-line-of-sight (NLOS) errors. Finally, an improved adaptive robust extended Kalman filter (AREKF) algorithm based on a TC integrated single-frequency multi-GNSS-TC RTK/UWB/INS/map system is studied to provide continuous, reliable, high-precision positioning information to AVs in indoor and outdoor environments. Experimental results show that the proposed scheme is capable of seamlessly guaranteeing the positioning accuracy of AVs in complex indoor and outdoor environments involving many measurement outliers and environmental interference effects.


2021 ◽  
Vol 4 (4) ◽  
pp. 101
Author(s):  
Burak Akpınar

Indoor and outdoor mapping studies can be completed relatively quickly, depending on the developments in Mobile Mapping Systems. Especially in indoor environments where high accuracy GNSS positions cannot be used, mapping studies can be carried out with SLAM algorithms. Although there are many different SLAM algorithms in the literature, each can produce results with different accuracy according to the mapped environment. In this study, 3D maps were produced with LOAM, A-LOAM, and HDL Graph SLAM algorithms in different environments such as long corridors, staircases, and outdoor environments, and the accuracies of the maps produced with different algorithms were compared. For this purpose, a mobile mapping platform using Velodyne VLP-16 LIDAR sensor was developed, and the odometer drift, which causes loss of accuracy in the data collected, was minimized by loop closure and plane detection methods. As a result of the tests, it was determined that the results of the LOAM algorithm were not as accurate as those of the A-LOAM and HDL Graph SLAM algorithms. Both indoor and outdoor environments and the A-LOAM results’ accuracy were two times better than HDL Graph SLAM results.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1640
Author(s):  
Xueli Xu ◽  
Jing Zhang ◽  
Liting Zhu ◽  
Qiansheng Huang

Since the outbreak in late December 2019, the coronavirus disease 2019 (COVID-19) pandemic has spread across the globe, causing great damage to human life and property. A lot of researchers around the world have devoted themselves to the study of its origin, pathogenic mechanism, and transmission route, and this article gives a summary. First, both humans and animals can act as the host of coronavirus. In indoor environments, the virus may exist in aerosols, droplets, saliva, etc., from the nose and mouth connected to the respiratory system, as well as feces, urine, etc., from the digestive and urinary systems. In addition, other substances, such as breast milk, eye feces, and blood, released from the host can carry viruses. The virus transmitted indoors is affected by indoor machinery, natural forces, and human activities, and spreads in different distances. Second, the virus spreads outdoors through three kinds of media: solid, liquid, and gas, and is affected by their survival time, the temperature, and humidity in the environment.


2021 ◽  
Vol 11 (23) ◽  
pp. 11107
Author(s):  
Kwang-Su Yun ◽  
Chong-Hee Yu ◽  
Kwon-Seob Lim ◽  
Young-Sic Kim ◽  
Insu Jeon

A 96-channel (50 GHz-spacing) athermal AWG has been developed. It has a wide operating range due to reduced temperature dependence than conventional AWG. The temperature dependence of the center wavelength of the developed module satisfied the ±0.05 nm range in all channels in the temperature range of −40 °C to 85 °C, and the insertion loss variation was also less than ±0.5 dB. As a result of validating its reliability through tests based on Telcordia-GR-1209 and GR-1221, the temperature dependence of the center wavelength satisfied the ±0.022 nm range, and the insertion loss variation was also less than ±0.2 dB. Accelerated life testing showed an expected service life of over 36.7 years, ensuring long-term safety of communication quality in harsh indoor and outdoor environments.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Lhilo Kenye ◽  
Rahul Kala

Summary Most conventional simultaneous localization and mapping (SLAM) approaches assume the working environment to be static. In a highly dynamic environment, this assumption divulges the impediments of a SLAM algorithm that lack modules that distinctively attend to dynamic objects despite the inclusion of optimization techniques. This work exploits such environments and reduces the effects of dynamic objects in a SLAM algorithm by separating features belonging to dynamic objects and static background using a generated binary mask image. While the features belonging to the static region are used for performing SLAM, the features belonging to non-static segments are reused instead of being eliminated. The approach employs deep neural network or DNN-based object detection module to obtain bounding boxes and then generates a lower resolution binary mask image using depth-first search algorithm over the detected semantics, characterizing the segmentation of the foreground from the static background. In addition, the features belonging to dynamic objects are tracked into consecutive frames to obtain better masking consistency. The proposed approach is tested on both publicly available dataset as well as self-collected dataset, which includes both indoor and outdoor environments. The experimental results show that the removal of features belonging to dynamic objects for a SLAM algorithm can significantly improve the overall output in a dynamic scene.


2021 ◽  
pp. 194173812110509
Author(s):  
Lindsay Lafferty ◽  
John Wawrzyniak ◽  
Morgan Chambers ◽  
Todd Pagliarulo ◽  
Arthur Berg ◽  
...  

Background: Traditional running gait analysis is limited to artificial environments, but whether treadmill running approximates overground running is debated. This study aimed to compare treadmill gait analysis using fixed video with outdoor gait analysis using drone video capture. Hypothesis: Measured kinematics would be similar between natural outdoor running and traditional treadmill gait analysis. Study Design: Crossover study. Level of Evidence: Level 2. Methods: The study population included cross-country, track and field, and recreational athletes with current running mileage of at least 15 km per week. Participants completed segments in indoor and outdoor environments. Indoor running was completed on a treadmill with static video capture, and outdoor segments were obtained via drone on an outdoor track. Three reviewers independently performed clinical gait analysis on footage for 32 runners using kinematic measurements with published acceptable intra- and interrater reliability. Results: Of the 8 kinematic variables measured, 2 were found to have moderate agreement indoor versus outdoor, while 6 had fair to poor agreement. Foot strike at initial contact and rearfoot position at midstance had moderate agreement indoor versus outdoor, with a kappa of 0.54 and 0.49, respectively. The remaining variables: tibial inclination at initial contact, knee flexion angle initial contact, forward trunk lean full gait cycle, knee center position midstance, knee separation midstance, and lateral pelvic drop at midstance were found to have fair to poor agreement, ranging from 0.21 to 0.36. Conclusion: This study suggests that kinematics may differ between natural outdoor running and traditional treadmill gait analysis. Clinical Relevance: Providing recommendations for altering gait based on treadmill gait analysis may prove to be harmful if treadmill analysis does not approximate natural running environments. Drone technology could provide advancement in clinical running recommendations by capturing runners in natural environments.


2021 ◽  
Vol 10 (11) ◽  
pp. 756
Author(s):  
Qingxiang Chen ◽  
Jing Chen ◽  
Wumeng Huang

Building information modeling (BIM), with detailed geometry and semantics of the indoor environment, has become an essential part of smart city development and city information modeling (CIM). However, visualizing large-scale BIM models within geographic information systems (GIS), such as virtual globes, remains a technological challenge with limited hardware resources. Previous methods generally removed indoor features in a single-source (BIM) scene to reduce the computational burden from outdoor views, which have not been applied to the multi-source and -scale geographic environment (e.g., virtual globes). This approach neglected special BIM semantics (e.g., transparent windows), which may miss a part of geographic features or buildings and cause unreasonable visualization. Besides, the method overlooked indoor visualization optimization, which may burden computing resources when visualizing big and complex buildings from indoor views. To address these problems, we propose a semantics-based method for visualizing large-scale BIM models within indoor and outdoor environments. First, we organize large-scale BIM models based on a latitude-longitude grid (LLG) in the outdoor environment; a multilayer cell-and-portal graph is used to index the structure of the BIM model and building entities. Second, we propose a scheduling algorithm to achieve the integrated visualization in indoor and outdoor environments considering BIM semantics. The application of the proposed method to a multi-scale and -source environment confirmed that it can achieve an effective and efficient visualization for huge BIM models in indoor-outdoor scenes. Compared with the previous study, the proposed method considers the BIM semantics and thus can visualize more complete features from outdoor and indoor views of BIM models in the virtual globe. Besides, the study only loads as visible data as possible, which can retain lower the volume of increased geometry, and thus keep a higher frame rate for the tested areas.


Sign in / Sign up

Export Citation Format

Share Document