Sentiment analysis using deep learning approaches: an overview

2019 ◽  
Vol 63 (1) ◽  
Author(s):  
Olivier Habimana ◽  
Yuhua Li ◽  
Ruixuan Li ◽  
Xiwu Gu ◽  
Ge Yu
Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Robertas Damaševičius ◽  
Marcin Woźniak

We describe the sentiment analysis experiments that were performed on the Lithuanian Internet comment dataset using traditional machine learning (Naïve Bayes Multinomial—NBM and Support Vector Machine—SVM) and deep learning (Long Short-Term Memory—LSTM and Convolutional Neural Network—CNN) approaches. The traditional machine learning techniques were used with the features based on the lexical, morphological, and character information. The deep learning approaches were applied on the top of two types of word embeddings (Vord2Vec continuous bag-of-words with negative sampling and FastText). Both traditional and deep learning approaches had to solve the positive/negative/neutral sentiment classification task on the balanced and full dataset versions. The best deep learning results (reaching 0.706 of accuracy) were achieved on the full dataset with CNN applied on top of the FastText embeddings, replaced emoticons, and eliminated diacritics. The traditional machine learning approaches demonstrated the best performance (0.735 of accuracy) on the full dataset with the NBM method, replaced emoticons, restored diacritics, and lemma unigrams as features. Although traditional machine learning approaches were superior when compared to the deep learning methods; deep learning demonstrated good results when applied on the small datasets.


2021 ◽  
Vol 11 (18) ◽  
pp. 8438
Author(s):  
Muhammad Mujahid ◽  
Ernesto Lee ◽  
Furqan Rustam ◽  
Patrick Bernard Washington ◽  
Saleem Ullah ◽  
...  

Amid the worldwide COVID-19 pandemic lockdowns, the closure of educational institutes leads to an unprecedented rise in online learning. For limiting the impact of COVID-19 and obstructing its widespread, educational institutions closed their campuses immediately and academic activities are moved to e-learning platforms. The effectiveness of e-learning is a critical concern for both students and parents, specifically in terms of its suitability to students and teachers and its technical feasibility with respect to different social scenarios. Such concerns must be reviewed from several aspects before e-learning can be adopted at such a larger scale. This study endeavors to investigate the effectiveness of e-learning by analyzing the sentiments of people about e-learning. Due to the rise of social media as an important mode of communication recently, people’s views can be found on platforms such as Twitter, Instagram, Facebook, etc. This study uses a Twitter dataset containing 17,155 tweets about e-learning. Machine learning and deep learning approaches have shown their suitability, capability, and potential for image processing, object detection, and natural language processing tasks and text analysis is no exception. Machine learning approaches have been largely used both for annotation and text and sentiment analysis. Keeping in view the adequacy and efficacy of machine learning models, this study adopts TextBlob, VADER (Valence Aware Dictionary for Sentiment Reasoning), and SentiWordNet to analyze the polarity and subjectivity score of tweets’ text. Furthermore, bearing in mind the fact that machine learning models display high classification accuracy, various machine learning models have been used for sentiment classification. Two feature extraction techniques, TF-IDF (Term Frequency-Inverse Document Frequency) and BoW (Bag of Words) have been used to effectively build and evaluate the models. All the models have been evaluated in terms of various important performance metrics such as accuracy, precision, recall, and F1 score. The results reveal that the random forest and support vector machine classifier achieve the highest accuracy of 0.95 when used with Bow features. Performance comparison is carried out for results of TextBlob, VADER, and SentiWordNet, as well as classification results of machine learning models and deep learning models such as CNN (Convolutional Neural Network), LSTM (Long Short Term Memory), CNN-LSTM, and Bi-LSTM (Bidirectional-LSTM). Additionally, topic modeling is performed to find the problems associated with e-learning which indicates that uncertainty of campus opening date, children’s disabilities to grasp online education, and lagging efficient networks for online education are the top three problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Najla M. Alharbi ◽  
Norah S. Alghamdi ◽  
Eman H. Alkhammash ◽  
Jehad F. Al Amri

Consumer feedback is highly valuable in business to assess their performance and is also beneficial to customers as it gives them an idea of what to expect from new products. In this research, the aim is to evaluate different deep learning approaches to accurately predict the opinion of customers based on mobile phone reviews obtained from Amazon.com. The prediction is based on analysing these reviews and categorizing them as positive, negative, or neutral. Different deep learning algorithms have been implemented and evaluated such as simple RNN with its four variants, namely, Long Short-Term Memory Networks (LRNN), Group Long Short-Term Memory Networks (GLRNN), gated recurrent unit (GRNN), and update recurrent unit (UGRNN). All evaluated algorithms are combined with word embedding as feature extraction approach for sentiment analysis including Glove, word2vec, and FastText by Skip-grams. The five different algorithms with the three feature extraction methods are evaluated based on accuracy, recall, precision, and F1-score for both balanced and unbalanced datasets. For the unbalanced dataset, it was found that the GLRNN algorithms with FastText feature extraction scored the highest accuracy of 93.75%. This result achieved the highest accuracy on this dataset when compared with other methods mentioned in the literature. For the balanced dataset, the highest achieved accuracy was 88.39% by the LRNN algorithm.


Sign in / Sign up

Export Citation Format

Share Document