Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems

2021 ◽  
Vol 64 (5) ◽  
Author(s):  
Xiang Zhang ◽  
Shuping He ◽  
Vladimir Stojanovic ◽  
Xiaoli Luan ◽  
Fei Liu
2017 ◽  
Vol 40 (9) ◽  
pp. 2789-2797 ◽  
Author(s):  
Jingyu Li ◽  
Liang Shen ◽  
Fengqi Yao ◽  
Huanyu Zhao ◽  
Jing Wang

This paper studies the issue of finite-time observer-based control via an event-triggered scheme for Markov jump repeated scalar nonlinear systems. An observer-based controller via an event-triggered scheme is proposed, which can save the limited network communication bandwidth effectively, so that the resulting error system is stochastically finite-time bounded. Based on the positive definite diagonally dominant matrix and the Lyapunov function technique, a sufficient condition is presented for the solvability of the addressed problem, and the desired observer-based controller can be constructed via a convex optimization problem. In the end, a simulation example is employed to show the validity and practicability of the proposed design method.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chengcheng Ren ◽  
Shuping He

An observer-based finite-time L2-L∞ control law is devised for a class of positive Markov jump systems in a complex environment. The complex environment parameters include bounded uncertainties, unknown nonlinearities, and external disturbances. The objective is to devise an appropriate observer-based control law that makes the corresponding augment error dynamic Markov jump systems be positive and finite-time stabilizable and satisfy the given L2-L∞ disturbance attenuation index. A sufficient condition is initially established on the existence of the observer-based finite-time controller by using proper stochastic Lyapunov-Krasovskii functional. The design criteria are presented by means of linear matrix inequalities. Finally, the feasibility and validity of the main results can be illustrated through a numerical example.


Sign in / Sign up

Export Citation Format

Share Document