nonfragile control
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2019 ◽  
Vol 24 (5) ◽  
Author(s):  
Yang Yang ◽  
Jianwei Xia ◽  
Jianli Zhao ◽  
Xiaodi Li ◽  
Zhen Wang

In this study, a multiobjective nonfragile control is proposed for a class of stochastic Takagi and Sugeno (T–S) fuzzy systems with mixed time delays to guarantee the optimal H2 and H∞ performance simultaneously. Firstly, based on the T–S fuzzy model, two form of nonfragile state feedback controllers are designed to stabilize the T–S fuzzy system, that is to say, nonfragile state feedback controllers minimize the H2 and H∞ performance simultaneously. Then, by applying T–S fuzzy approach, the multiobjective H2/H∞ nonfragile fuzzy control problem is transformed into linear matrix inequality (LMI)-constrained multiobjective problem (MOP). In addition, we efficiently solve Pareto optimal solutions for the MOP by employing LMI-based multiobjective evolution algorithm (MOEA). Finally, the validity of this approach is illustrated by a realistic design example.


Author(s):  
R. Sakthivel ◽  
R. Mohana Priya ◽  
Chao Wang ◽  
P. Dhanalakshmi

This paper considers a design problem of dissipative and observer-based finite-time nonfragile control for a class of uncertain discrete-time system with time-varying delay, nonlinearities, external disturbances, and actuator saturation. In particular, in this work, it is assumed that the nonlinearities satisfy Lipschitz condition for obtaining the required results. By choosing a suitable Lyapunov–Krasovskii functional, a new set of sufficient conditions is obtained in terms of linear matrix inequalities, which ensures the finite-time boundedness and dissipativeness of the resulting closed-loop system. Meanwhile, the solvability condition for the observer-based finite-time nonfragile control is also established, in which the control gain can be computed by solving a set of matrix inequalities. Finally, a numerical example based on the electric-hydraulic system is provided to illustrate the applicability of the developed control design technique.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yunsai Chen ◽  
Yongjie Pang ◽  
Zhao Yang ◽  
Liang Ma

This paper investigates the robust H∞ nonfragile control problem for a class of discrete-time hybrid systems based on piecewise affine models. The objective is to develop an admissible piecewise affine nonfragile controller such that the resulting closed-loop system is asymptotically stable with robust H∞ performance γ. By employing a state-control augmentation methodology, some new sufficient conditions for the controller synthesis are formulated based on piecewise Lyapunov functions (PLFs). The controller gains can be obtained via solving a set of linear matrix inequalities. Simulation examples are finally presented to demonstrate the feasibility and effectiveness of the proposed approaches.


Sign in / Sign up

Export Citation Format

Share Document