Fault estimation and fault-tolerant control for linear discrete time-varying stochastic systems

2021 ◽  
Vol 64 (10) ◽  
Author(s):  
Tianliang Zhang ◽  
Feiqi Deng ◽  
Yuan Sun ◽  
Peng Shi
2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


2015 ◽  
Vol 25 (1) ◽  
pp. 159-174 ◽  
Author(s):  
Zhaohui Cen ◽  
Hassan Noura ◽  
Younes Al Younes

Abstract A systematic fault tolerant control (FTC) scheme based on fault estimation for a quadrotor actuator, which integrates normal control, active and passive FTC and fault parking is proposed in this paper. Firstly, an adaptive Thau observer (ATO) is presented to estimate the quadrotor rotor fault magnitudes, and then faults with different magnitudes and time-varying natures are rated into corresponding fault severity levels based on the pre-defined fault-tolerant boundaries. Secondly, a systematic FTC strategy which can coordinate various FTC methods is designed to compensate for failures depending on the fault types and severity levels. Unlike former stand-alone passive FTC or active FTC, our proposed FTC scheme can compensate for faults in a way of condition-based maintenance (CBM), and especially consider the fatal failures that traditional FTC techniques cannot accommodate to avoid the crashing of UAVs. Finally, various simulations are carried out to show the performance and effectiveness of the proposed method.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Abdelmounaim Khallouq ◽  
Asma Karama ◽  
Mohamed Abyad

Abstract This paper presents the problem of actuator fault estimation and fault-tolerant control (FTC) of a biological process using Takagi–Sugeno fuzzy formulation. The goal is to ensure the desired outputs tracking even if the time-varying actuator faults occur. We propose to use a proportional multi-integral (PMI) observer to estimate both the time-varying actuator faults and the state of system. The reconstructed faults are used to reconfigure the nominal controller. As a nominal control, we use a fuzzy linear quadratic integral (LQI) law. To ensure the global asymptotic convergence of the PMI observer and to improve the compensation speed of faults, we propose to use the multiple Lyapunov function by introducing a convergence rate. Sufficient conditions in terms of linear matrix inequalities (LMIs) are developed. The obtained results show that, the proposed approach is successfully applied to the problem of actuator fault-tolerant control of a bacterial growth process.


Sign in / Sign up

Export Citation Format

Share Document