fault severity
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 72)

H-INDEX

14
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 365
Author(s):  
Mohamed Esam El-Dine Atta ◽  
Doaa Khalil Ibrahim ◽  
Mahmoud Gilany ◽  
Ahmed F. Zobaa

This paper introduces a novel online adaptive protection scheme to detect and diagnose broken bar faults (BBFs) in induction motors during steady-state conditions based on an analytical approach. The proposed scheme can detect precisely adjacent and non-adjacent BBFs in their incipient phases under different inertia, variable loading conditions, and noisy environments. The main idea of the proposed scheme is monitoring the variation in the phase angle of the main sideband frequency components by applying Fast Fourier Transform to only one phase of the stator current. The scheme does not need any predetermined settings but only one of the stator current signals during the commissioning phase. The threshold value is calculated adaptively to discriminate between healthy and faulty cases. Besides, an index is proposed to designate the fault severity. The performance of this scheme is verified using two simulated motors with different designs by applying the finite element method in addition to a real experimental dataset. The results show that the proposed scheme can effectively detect half, one, two, or three broken bars in adjacent/non-adjacent versions and also estimate their severity under different operating conditions and in a noisy environment, with accuracy reaching 100% independently from motor parameters.


2021 ◽  
Vol 21 (4) ◽  
pp. 329-340
Author(s):  
Hyung Jun Park ◽  
Jinwoo Sim ◽  
Jaewon Jang ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
...  

Author(s):  
P Akhenia ◽  
K Bhavsar ◽  
J Panchal ◽  
V Vakharia

Condition monitoring and diagnosis of a bearing are very important for any rotating machine as it governs the safety while the machine is in operating condition. To construct a feature vector selection of suitable signal processing techniques is a challenge for vibration-based condition monitoring techniques. In the methodology proposed, Short Time Fourier Transform (STFT), Walsh Hadamard Transform (WHT) and Variable Mode Decomposition (VMD) are used to generate 2-D time-frequency spectrograms from the various fault conditions of bearing. When Deep learning techniques apply for fault diagnosis, a large amount of dataset is required for training of machine learning model. To overcome this issue single image Generative Adversarial Network (SinGAN) as a data augmentation technique, utilized for generating additional 2-D time-frequency spectrograms from various fault conditions of ball bearing. To detect fault severity, four deep learning algorithms, ResNet 34, ResNet50, VGG16, and MobileNetV2 are used as a classifier. Experiments are conducted on a rolling bearing dataset provided by the bearing data center of Case Western Reserve University (CWRU) for validating the utility of methodology proposed. Results show that the proposed methodology enables to detect fault severity level with high classification accuracy.


2021 ◽  
Author(s):  
Mario Pena ◽  
Laura Lanzarini ◽  
Mariela Cerrada ◽  
Diego Cabrera ◽  
Rene-Vinicio Sanchez

Author(s):  
Haochen Liu ◽  
Yifan Zhao ◽  
Anna Zaporowska ◽  
Zakwan Skaf

AbstractAccurate fault diagnosis and prognosis can significantly reduce maintenance costs, increase the safety and availability of engineering systems that have become increasingly complex. It has been observed that very limited researches have been reported on fault diagnosis where multi-component degradation are presented. This is essentially a challenging Complex Systems problem where features multiple components interacting simultaneously and nonlinearly with each other and its environment on multiple levels. Even the degradation of a single component can lead to a misidentification of the fault severity level. This paper introduces a new test rig to simulate the multi-component degradation of the aircraft fuel system. A machine learning-based data analytical approach based on the classification of clustering features from both time and frequency domains is proposed. The scope of this framework is the identification of the location and severity of not only the system fault but also the multi-component degradation. The results illustrate that (a) the fault can be detected with accuracy > 99%; (b) the severity of fault can be identified with an accuracy of almost 100%; (c) the degradation level can be successfully identified with the R-square value > 0.9.


Sign in / Sign up

Export Citation Format

Share Document