Velocity field of wave-induced local fluid flow in double-porosity media

2014 ◽  
Vol 57 (6) ◽  
pp. 1020-1030 ◽  
Author(s):  
Jing Ba ◽  
Lin Zhang ◽  
WeiTao Sun ◽  
ZhaoBing Hao
Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. T237-T256
Author(s):  
Enjiang Wang ◽  
Jing Ba ◽  
José M. Carcione ◽  
Yang Liu ◽  
Hongchao Dong

We have studied the reflection and transmission of elastic waves incident on an interface separating an elastic solid and a double-porosity medium described by the Biot-Rayleigh model that considers the effect of local fluid flow (LFF). The P1- and SV-wave incidence generates two reflected elastic waves in the elastic solid and four transmitted inhomogeneous waves in the double-porosity medium, represented by Helmholtz potential functions. The reflection and transmission coefficients are derived in closed form based on the boundary conditions at the interface. Energy ratios are then derived, and energy conservation at the interface is verified. The contribution of fluid flow to the three transmitted longitudinal waves in the double-porosity medium is expressed as a function of frequency, the transmission coefficient, and the corresponding slowness vector. Numerical examples indicate that LFF predicts significant compressional-wave velocity dispersion in the seismic band, and frequency-dependent reflection and transmission coefficients. For the case in which the incidence angle is larger than the critical angle, the transmitted P1-wave shows a nonzero energy flux in the vertical direction, whereas it does not if LFF is absent.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1100-1107
Author(s):  
Ghulam Rasool ◽  
Waqar A. Khan ◽  
Sardar Muhammad Bilal ◽  
Ilyas Khan

Abstract This research is mainly concerned with the characteristics of magnetohydrodynamics and Darcy–Forchheimer medium in nanofluid flow between two horizontal plates. A uniformly induced magnetic impact is involved at the direction normal to the lower plate. Darcy–Forchheimer medium is considered between the plates that allow the flow along horizontal axis with additional effects of porosity and friction. The features of Brownian diffusive motion and thermophoresis are disclosed. Governing problems are transformed into nonlinear ordinary problems using appropriate transformations. Numerical Runge–Kutta procedure is applied using MATLAB to solve the problems and acquire the data for velocity field, thermal distribution, and concentration distribution. Results have been plotted graphically. The outcomes indicate that higher viscosity results in decline in fluid flow. Thermal profile receives a decline for larger viscosity parameter; however, Brownian diffusion and thermophoresis appeared as enhancing factors for the said profile. Numerical data indicate that heat flux reduces for viscosity parameter. However, enhancement is observed in skin-friction for elevated values of porosity factor. Data of this paper are practically helpful in industrial and engineering applications of nanofluids.


Sign in / Sign up

Export Citation Format

Share Document