Intelligent assistant driving method for tunnel boring machine based on big data

2021 ◽  
Author(s):  
Dong Guo ◽  
Jinhui Li ◽  
Shui-Hua Jiang ◽  
Xu Li ◽  
Zuyu Chen
2021 ◽  
Vol 12 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Jinhui Li ◽  
Pengxi Li ◽  
Dong Guo ◽  
Xu Li ◽  
Zuyu Chen

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Shuangjing Wang ◽  
Yujie Wang ◽  
Xu Li ◽  
Lipeng Liu ◽  
Hai Xing ◽  
...  

Tunnel boring machine (TBM) tunneling data have been extensively collected to utilize TBM information technology by analyzing and mining the data for achieving a safe and efficient TBM tunneling. Feature extraction of big data could reduce the complexity for problems, but conventional indexes based on feature extraction, such as field penetration index (FPI), specific penetration (SP), and boreability index (BI), have some disadvantages. Thus, we present novel boring indexes derived from tunneling data in the Yinchao TBM project. Linear thrust-penetration and torque-penetration relationships in filtered ascending sections ( p  ≥ 2 mm/r) are proposed using statistical features and through physical mechanism analysis of parameters in the TBM cyclic tunneling process. Boring indexes, such as normal boring difficulty index, initial rock mass fragmentation difficulty index, and tangential boring difficulty index, are defined using the coefficients of the linear thrust-penetration and torque-penetration relationships. Subsequently, the defined boring indexes are verified using performance prediction of 291 cyclic tunneling processes. Finally, a preliminary application of support measure suggestions is conducted using the statistical features of boring indexes, where certain criteria are proposed and verified. The results showed that the criterion of boring indexes for support measure suggestions could achieve a reasonable confirmation, potentially providing quantitative quotas for support measure suggestions in the subsequent construction process.


2020 ◽  
Vol 140 (3) ◽  
pp. 320-325
Author(s):  
Yoshihiro Ohnishi ◽  
Takahisa Shigematsu ◽  
Takuma Kawai ◽  
Shinichi Kawamura ◽  
Noboru Oda

2016 ◽  
Vol 33 (3) ◽  
pp. 317
Author(s):  
Fei Wang ◽  
Mengbo Liu ◽  
Long Chen ◽  
Wen Liu ◽  
Linmeng Tang

Author(s):  
Gi-Jun Lee ◽  
Hee-Hwan Ryu ◽  
Tae-Hyuk Kwon ◽  
Gye-Chun Cho ◽  
Kyoung-Yul Kim ◽  
...  

2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Ye Zhu ◽  
Wei Sun ◽  
Junzhou Huo ◽  
Zhichao Meng

AbstractThe accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel boring machine (TBM) cutterhead for cutting ability and slagging ability. This paper propose cutting efficiency, stability, and continuity of slagging as the evaluation indexes of comprehensive cutterhead performance. On the basis of research of true TBM engineering applications, this paper proposes a calculation method for each index. A slagging efficiency index with a ratio of the maximum difference between the slagging amount and average slagging is established. And a slagging stability index with a ratio of the maximum slagging fluctuation and average slagging is presented. Meanwhile, a cutting efficiency index by the weighed average value of multistage rock fragmentation of a cutter’s specific energy is established. The Robbins and China Railway Construction Corporation (CRCC) cutterheads are evaluated. The results show that under the same thrust and torque, the slagging stability of the CRCC scheme is worse, but the slagging continuity of the CRCC scheme is better. The cutting ability index shows that the CRCC cutterhead is more efficient.


Sign in / Sign up

Export Citation Format

Share Document