Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau

2012 ◽  
Vol 22 (5) ◽  
pp. 795-809 ◽  
Author(s):  
Shunwu Zhou ◽  
Ping Wu ◽  
Chuanhui Wang ◽  
Juncai Han
2020 ◽  
Author(s):  
Hongru Yan ◽  
Jianping Huang ◽  
Yongli He ◽  
Yuzhi Liu ◽  
Tianhe Wang ◽  
...  

2020 ◽  
Vol 125 (23) ◽  
Author(s):  
Hongru Yan ◽  
Jianping Huang ◽  
Yongli He ◽  
Yuzhi Liu ◽  
Tianhe Wang ◽  
...  

2019 ◽  
Vol 64 (27) ◽  
pp. 2822-2829
Author(s):  
Zeqing He ◽  
Tandong Yao ◽  
Baiqing Xu ◽  
Guangjian Wu ◽  
Xiaowei Niu ◽  
...  

2021 ◽  
Vol 13 (22) ◽  
pp. 4676
Author(s):  
Deli Meng ◽  
Wanjiao Song ◽  
Qing Dong ◽  
Zi Yin ◽  
Wenbo Zhao

The Tibetan Plateau (TP), atmosphere, and Indo-Pacific warm pool (IPWP) together constitute a regional land–atmosphere–ocean water vapor transport system. This study uses remote sensing data, reanalysis data, and observational data to explore the spatiotemporal variations of the summer atmospheric water cycle over the TP and its possible response to the air-sea interaction in the IPWP during the period 1958–2019. The results reveal that the atmospheric water cycle process over the TP presented an interannual and interdecadal strengthening trend. The climatic precipitation recycle ratio (PRR) over the TP was 18%, and the stronger the evapotranspiration, the higher the PRR. On the interdecadal scale, the change in evapotranspiration has a significant negative correlation with the Pacific Decadal Oscillation (PDO) index. The variability of the water vapor transport (WVT) over the TP was controlled by the dynamic and thermal conditions inside the plateau and the external air-sea interaction processes of the IPWP. When the summer monsoon over the TP was strong, there was an anomalous cyclonic WVT, which increased the water vapor budget (WVB) over the TP. The central and eastern tropical Pacific, the maritime continent and the western Indian Ocean together constituted the triple Sea Surface Temperature (SST) anomaly, which enhanced the convective activity over the IPWP and induced a significant easterly wind anomaly in the middle and lower troposphere, and then generated pronounced easterly WVT anomalies from the tropical Pacific to the maritime continent and the Bay of Bengal. Affected by the air-sea changes in the IPWP, the combined effects of the upstream strengthening and the downstream weakening in the water vapor transport process, directly and indirectly, increased the water vapor transport and budget of TP.


2002 ◽  
Vol 40 (6) ◽  
pp. 1211-1219 ◽  
Author(s):  
J.R. Wang ◽  
P. Racette ◽  
M.E. Triesky ◽  
E.V. Browell ◽  
S. Ismail ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document