atmospheric water
Recently Published Documents


TOTAL DOCUMENTS

1351
(FIVE YEARS 299)

H-INDEX

66
(FIVE YEARS 12)

Author(s):  
Wei Yao ◽  
Xiaodong Zhu ◽  
Zhenglong Xu ◽  
Ruth Anaya Davis ◽  
Guanglei Liu ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 159
Author(s):  
Lifeng Li ◽  
Zenan Shi ◽  
Hong Liang ◽  
Jie Liu ◽  
Zhiwei Qiao

Atmospheric water harvesting by strong adsorbents is a feasible method of solving the shortage of water resources, especially for arid regions. In this study, a machine learning (ML)-assisted high-throughput computational screening is employed to calculate the capture of H2O from N2 and O2 for 6013 computation-ready, experimental metal-organic frameworks (CoRE-MOFs) and 137,953 hypothetical MOFs (hMOFs). Through the univariate analysis of MOF structure-performance relationships, Qst is shown to be a key descriptor. Moreover, three ML algorithms (random forest, gradient boosted regression trees, and neighbor component analysis (NCA)) are applied to hunt for the complicated interrelation between six descriptors and performance. After the optimizing strategy of grid search and five-fold cross-validation is performed, three ML can effectively build the predictive model for CoRE-MOFs, and the accuracy R2 of NCA can reach 0.97. In addition, based on the relative importance of the descriptors by ML, it can be quantitatively concluded that the Qst is dominant in governing the capture of H2O. Besides, the NCA model trained by 6013 CoRE-MOFs can predict the selectivity of hMOFs with a R2 of 0.86, which is more universal than other models. Finally, 10 CoRE-MOFs and 10 hMOFs with high performance are identified. The computational screening and prediction of ML could provide guidance and inspiration for the development of materials for water harvesting in the atmosphere.


MAUSAM ◽  
2022 ◽  
Vol 44 (3) ◽  
pp. 243-248
Author(s):  
K. NIRANJAN ◽  
Y. RAMESH BABU

Integrated atmospheric water vapour content. has been evaluated from the spectral optical depths around the PaT band of water vapour by making directly transmitted solar flux measurements at 800, 935 and 1025 nm. The temporal variation of the total precipitable water vapour shows significant seasonal variation with maximum during~ pre-monsoon and monsoon months and minimum during winter months. The integrated content shows a positive correlation with surface humidity parameters and the correlation is better during monsoon months compared to other seasons. The experimentally derived variations of water vapour are compared with the model variations formulated using radiosonde data. The aerosol extinctions derived from the, multi-spectral solar flux measurements in the visible and near IR regions increase with increasing atmospheric water vapour and this increase shows .a seasonal dependence the surface temperature also seems to affect the, aerosol extinction probably through Its effect on the mixing heights.


Author(s):  
Hyunchul Park ◽  
Iwan Haechler ◽  
Gabriel Schnoering ◽  
Marco D. Ponte ◽  
Thomas M. Schutzius ◽  
...  

Author(s):  
Suwei Dong ◽  
Yunfan Xu ◽  
Chenjie Wang ◽  
Cihui Liu ◽  
Jinlei Zhang ◽  
...  

Solar steam generation (SSG) is developed as a promising way for seawater desalination and wastewater purification, bringing new opportunities for solving the shortages of freshwater. Herein, hierarchical columnar RGO bundles...


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Marc Muselli ◽  
Danilo Carvajal ◽  
Daniel A. Beysens

The metal surfaces of a car exhibit favorable properties for the passive condensation of atmospheric water. Under certain nocturnal climatic conditions (high relative humidity, weak windspeed, and total nebulosity), dew is often observed on cars, and it is appropriate to ask the question of using a vehicle as a standard condenser for estimating the dew yield. In order to see whether cars can be used as reference dew condensers, we report a detailed study of radiative cooling and dew formation on cars in the presence of radiating obstacles and for various windspeeds. Measurements of temperature and condensed dew mass on different car parts (rooftop, front and back hoods, windshield, lateral and back windows, inside and outside air) are compared with the same data obtained on a horizontal, thermally isolated planar film. The paper concludes that heat transfer coefficients, evaluated from temperature and dew yield measurements, are found nearly independent of windspeed and tilt angles. Moreover, this work describes the relation between cooling and dew condensation with the presence or not of thermal isolation. This dependence varies with the surface tilt angle according to the angular dependence of the atmosphere radiation. This work also confirms that cars can be used to estimate the dew yields in a given site. A visual observation scale h = Kn, with h the dew yield (mm) and n = 0, 1 2, 3 an index, which depends whether dew forms or not on rooftop, windshield, and lateral windows, is successfully tested with 8 different cars in 5 sites with three different climates, using K = (0.067 ± 0.0036) mm.day−1.


Sign in / Sign up

Export Citation Format

Share Document