Radius of locally convex subsets in Alexandrov spaces with curvature ⩾ 1 and radius > π/2

2013 ◽  
Vol 9 (2) ◽  
pp. 417-423 ◽  
Author(s):  
Yusheng Wang ◽  
Zhongyang Sun
1995 ◽  
Vol 51 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Sehie Park

Let (E, τ) be a Hausdorff topological vector space and (X, ω) a weakly compact convex subset of E with the relative weak topology ω. Recently, there have appeared best approximation and fixed point theorems for convex-valued upper semicontinuous maps F: (X, ω) → 2(E, τ) whenever (E, τ) is locally convex. In this paper, these results are extended to a very broad class of multifunctions containing composites of acyclic maps in a topological vector space having sufficiently many linear functionals. Moreover, we also obtain best approximation theorems for classes of multifunctions defined on approximatively compact convex subsets of locally convex Hausdorff topological vector spaces or closed convex subsets of Banach spaces with the Oshman property.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6005-6013
Author(s):  
Mahdi Iranmanesh ◽  
Fatemeh Soleimany

In this paper we use the concept of numerical range to characterize best approximation points in closed convex subsets of B(H): Finally by using this method we give also a useful characterization of best approximation in closed convex subsets of a C*-algebra A.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Sameh Shenawy

Abstract Let $\mathcal {W}^{n}$ W n be the set of smooth complete simply connected n-dimensional manifolds without conjugate points. The Euclidean space and the hyperbolic space are examples of these manifolds. Let $W\in \mathcal {W}^{n}$ W ∈ W n and let A and B be two convex subsets of W. This note aims to investigate separation and slab horosphere separation of A and B. For example,sufficient conditions on A and B to be separated by a slab of horospheres are obtained. Existence and uniqueness of foot points and farthest points of a convex set A in $W\in \mathcal {W}$ W ∈ W are considered.


Sign in / Sign up

Export Citation Format

Share Document