Manufacturing cost constrained topology optimization for additive manufacturing

2019 ◽  
Vol 14 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Jikai Liu ◽  
Qian Chen ◽  
Xuan Liang ◽  
Albert C. To
2020 ◽  
Vol 1 ◽  
pp. 325-334
Author(s):  
A. Nordin

AbstractThis paper describes an approach for designing lightweight components produced through additive manufacturing (AM). Lightweight design is often done through topology optimization (TO). However, the process of manually interpreting mesh-based and imprecise results from a TO into a geometry that fulfils all requirements is complex. To aid in this process, this paper suggest an approach based on combining overhang-constrained TO with lattice-based TO to automate complex tasks, retain parametric control, and to minimize manufacturing cost. The approach is validated through a benchmark part.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Paulo Reis ◽  
Mariana Volpini ◽  
Joana Pimenta Maia ◽  
Igor Batista Guimarães ◽  
Cristiane Evelise ◽  
...  

Purpose The purpose of this study is to validate a novel model of resting hand splint manufactured by additive manufacturing (AM) and compare it with the traditional model manufactured by high temperature thermoplastic in terms of cost, weight, volume and thermal comfort. Design/methodology/approach A novel resting hand splint model was created from the topology optimization (TO) and analyzed, by finite-element analysis, manufacturing cost and weight, with a traditional resting hand splint. A pilot clinical study was carried out to verify heat diffusion during the use of the two splints. Findings The results showed that compared with the traditional model, the novel model reduced the volume of material used by 35.48%, the weight of the orthosis by 17.56% and the maximum surface deformation by 171.17% when subjected to actuation forces. It was also verified that, when manufactured with Nylon by AM, the new model is 1.5 times cheaper than the traditional model made of Polypropylene. The result of the thermographic analysis showed greater temperature variation in the use of the traditional splint (+4.6°C) compared to the temperature variation observed in the nylon splint (2.1°C). Practical implications These results have as clinical relevance the demonstration of the feasibility of manufacturing functional orthoses that are more comfortable, cheaper and lighter than traditional ones. Originality/value This study describes the use of TO to manufacture a novel resting hand splint, which was compared with the commonly used traditional splint in terms of mechanical resistance, weight, cost and thermal comfort.


Designs ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 19
Author(s):  
Andreas K. Lianos ◽  
Harry Bikas ◽  
Panagiotis Stavropoulos

The design methodologies and part shape algorithms for additive manufacturing (AM) are rapidly growing fields, proven to be of critical importance for the uptake of additive manufacturing of parts with enhanced performance in all major industrial sectors. The current trend for part design is a computationally driven approach where the parts are algorithmically morphed to meet the functional requirements with optimized performance in terms of material distribution. However, the manufacturability restrictions of AM processes are not considered at the primary design phases but at a later post-morphed stage of the part’s design. This paper proposes an AM design method to ensure: (1) optimized material distribution based on the load case and (2) the part’s manufacturability. The buildability restrictions from the direct energy deposition (DED) AM technology were used as input to the AM shaping algorithm to grant high AM manufacturability. The first step of this work was to define the term of AM manufacturability, its effect on AM production, and to propose a framework to estimate the quantified value of AM manufacturability for the given part design. Moreover, an AM design method is proposed, based on the developed internal stresses of the build volume for the load case. Stress tensors are used for the determination of the build orientation and as input for the part morphing. A top-down mesoscale geometric optimization is used to realize the AM part design. The DED Design for Additive Manufacturing (DfAM) rules are used to delimitate the morphing of the part, representing at the same time the freeform mindset of the AM technology. The morphed shape of the part is optimized in terms of topology and AM manufacturability. The topology optimization and AM manufacturability indicator (TMI) is introduced to screen the percentage of design elements that serve topology optimization and the ones that serve AM manufacturability. In the end, a case study for proof of concept is realized.


2021 ◽  
Vol 386 ◽  
pp. 114095
Author(s):  
Grzegorz Misiun ◽  
Emiel van de Ven ◽  
Matthijs Langelaar ◽  
Hubert Geijselaers ◽  
Fred van Keulen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document