Buried Effects of Surface Plasmon Resonance Modes for Periodic Metal–Dielectric Nanostructures Consisting of Coupled Spherical Metal Nanoparticles with Cylindrical Pore Filled with a Dielectric

Plasmonics ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Yuan-Fong Chau ◽  
Ci-Yao Jheng
2016 ◽  
Vol 30 (22) ◽  
pp. 1650280 ◽  
Author(s):  
Rui-Bing Wang ◽  
Zhi-Dong Zhang ◽  
Guo-Tai Jiao ◽  
Chen-Yang Xue ◽  
Shu-Bin Yan ◽  
...  

The extinction spectra and electric field distribution of an asymmetric cylindrical nanorod dimer (ACND) are calculated by discrete dipole approximation. The ACND is composed of two linear orders of cylindrical silver nanorods with different radii and lengths. The effects of the structural parameters of ACND on the localized surface plasmon resonance (LSPR) mode are also studied. Results show two resonance peaks in the extinction spectra of ACND: the higher-energy anti-bonding mode and the lower-energy bonding mode. The interaction of two hybridization plasmonic resonance modes produces an asymmetric line shape in the extinction spectra, which is considered to be a Fano resonance profile.


Author(s):  
Wenying Ma ◽  
Fangrong Hu ◽  
Huan Yang ◽  
Weimin Wang

Metal nanoparticles have potential utilities in biochemical sensing applications owing to their localized surface plasmon resonance characteristics. To facilitate the application of localized surface plasmon resonance sensors, a simple and effective interpretation of spectra responses of metal nanoparticles to analyte was developed in this paper. Based on a bilayer structure model and a trilayer structure model, a general relationship between the peak wavelength changes of extinction spectra and the thickness of the receptor layer as well as the analyte layer was established. Both analytical analysis and chloroform vapor test experiment demonstrate that the sensing performance is greatly dependent on the receptor thickness, and a thinner receptor layer will induce a greater sensitivity. These insights can be used as guidelines in fabricating highly sensitive localized surface plasmon resonance-based biochemical sensors.


2018 ◽  
Vol 20 (38) ◽  
pp. 25078-25084 ◽  
Author(s):  
Haiyan Nan ◽  
Zhirong Chen ◽  
Jie Jiang ◽  
JiaQi Li ◽  
Weiwei Zhao ◽  
...  

Two transparent graphene–metal nanoparticle (NP) hybrid schemes, namely Au NPs covered by graphene layers and Au NPs encapsulated by graphene layers, are presented and the effect of graphene on the localized surface plasmon resonance of metal NPs is systematically investigated.


Sign in / Sign up

Export Citation Format

Share Document