High-resolution deep transferred ASPPU-Net for nuclei segmentation of histopathology images

Author(s):  
Amit Kumar Chanchal ◽  
Shyam Lal ◽  
Jyoti Kini
2021 ◽  
Author(s):  
V. Y. Ramirez Guatemala-Sanchez ◽  
H. Peregrina-Barreto ◽  
G. Lopez-Armas

2020 ◽  
Author(s):  
Tahir Mahmood ◽  
Muhammad Owais ◽  
Kyoung Jun Noh ◽  
Hyo Sik Yoon ◽  
Adnan Haider ◽  
...  

BACKGROUND Accurate nuclei segmentation in histopathology images plays a key role in digital pathology. It is considered a prerequisite for the determination of cell phenotype, nuclear morphometrics, cell classification, and the grading and prognosis of cancer. However, it is a very challenging task because of the different types of nuclei, large intra-class variations, and diverse cell morphologies. Consequently, the manual inspection of such images under high-resolution microscopes is tedious and time-consuming. Alternatively, artificial intelligence (AI)-based automated techniques, which are fast, robust, and require less human effort, can be used. Recently, several AI-based nuclei segmentation techniques have been proposed. They have shown a significant performance improvement for this task, but there is room for further improvement. Thus, we propose an AI-based nuclei segmentation technique in which we adopt a new nuclei segmentation network empowered by residual skip connections to address this issue. OBJECTIVE The aim of this study was to develop an AI-based nuclei segmentation method for histopathology images of multiple organs. METHODS Our proposed residual-skip-connections-based nuclei segmentation network (R-NSN) is comprised of two main stages: Stain normalization and nuclei segmentation as shown in Figure 2. In the 1st stage, a histopathology image is stain normalized to balance the color and intensity variation. Subsequently, it is used as an input to the R-NSN in stage 2, which outputs a segmented image. RESULTS Experiments were performed on two publicly available datasets: 1) The Cancer Genomic Atlas (TCGA), and 2) Triple-negative Breast Cancer (TNBC). The results show that our proposed technique achieves an aggregated Jaccard index (AJI) of 0.6794, Dice coefficient of 0.8084, and F1-measure of 0.8547 on the TCGA dataset, and an AJI of 0.7332, Dice coefficient of 0.8441, precision of 0.8352, recall of 0.8306, and F1-measure of 0.8329 on the TNBC dataset. These values are higher than those of the state-of-the-art methods. CONCLUSIONS The proposed R-NSN has the potential to maintain crucial features by using the residual connectivity from the encoder to the decoder and uses only a few layers, which reduces the computational cost of the model. The selection of a good stain normalization technique, the effective use of residual connections to avoid information loss, and the use of only a few layers to reduce the computational cost yielded outstanding results. Thus, our nuclei segmentation method is robust and is superior to the state-of-the-art methods. We expect that this study will contribute to the development of computational pathology software for research and clinical use and enhance the impact of computational pathology.


Sign in / Sign up

Export Citation Format

Share Document