scholarly journals Automatic, global registration in laparoscopic liver surgery

Author(s):  
Bongjin Koo ◽  
Maria R. Robu ◽  
Moustafa Allam ◽  
Micha Pfeiffer ◽  
Stephen Thompson ◽  
...  

Abstract Purpose The initial registration of a 3D pre-operative CT model to a 2D laparoscopic video image in augmented reality systems for liver surgery needs to be fast, intuitive to perform and with minimal interruptions to the surgical intervention. Several recent methods have focussed on using easily recognisable landmarks across modalities. However, these methods still need manual annotation or manual alignment. We propose a novel, fully automatic pipeline for 3D–2D global registration in laparoscopic liver interventions. Methods Firstly, we train a fully convolutional network for the semantic detection of liver contours in laparoscopic images. Secondly, we propose a novel contour-based global registration algorithm to estimate the camera pose without any manual input during surgery. The contours used are the anterior ridge and the silhouette of the liver. Results We show excellent generalisation of the semantic contour detection on test data from 8 clinical cases. In quantitative experiments, the proposed contour-based registration can successfully estimate a global alignment with as little as 30% of the liver surface, a visibility ratio which is characteristic of laparoscopic interventions. Moreover, the proposed pipeline showed very promising results in clinical data from 5 laparoscopic interventions. Conclusions Our proposed automatic global registration could make augmented reality systems more intuitive and usable for surgeons and easier to translate to operating rooms. Yet, as the liver is deformed significantly during surgery, it will be very beneficial to incorporate deformation into our method for more accurate registration.

HPB ◽  
2019 ◽  
Vol 21 ◽  
pp. S671-S672
Author(s):  
C. Schneider ◽  
S. Thompson ◽  
K. Gurusamy ◽  
D. Stoyanov ◽  
D.J. Hawkes ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 138
Author(s):  
Hashfi Fadhillah ◽  
Suryo Adhi Wibowo ◽  
Rita Purnamasari

Abstract  Combining the real world with the virtual world and then modeling it in 3D is an effort carried on Augmented Reality (AR) technology. Using fingers for computer operations on multi-devices makes the system more interactive. Marker-based AR is one type of AR that uses markers in its detection. This study designed the AR system by detecting fingertips as markers. This system is designed using the Region-based Deep Fully Convolutional Network (R-FCN) deep learning method. This method develops detection results obtained from the Fully Connected Network (FCN). Detection results will be integrated with a computer pointer for basic operations. This study uses a predetermined step scheme to get the best IoU parameters, precision and accuracy. The scheme in this study uses a step scheme, namely: 25K, 50K and 75K step. High precision creates centroid point changes that are not too far away. High accuracy can improve AR performance under conditions of rapid movement and improper finger conditions. The system design uses a dataset in the form of an index finger image with a configuration of 10,800 training data and 3,600 test data. The model will be tested on each scheme using video at different distances, locations and times. This study produced the best results on the 25K step scheme with IoU of 69%, precision of 5.56 and accuracy of 96%.Keyword: Augmented Reality, Region-based Convolutional Network, Fully Convolutional Network, Pointer, Step training Abstrak Menggabungkan dunia nyata dengan dunia virtual lalu memodelkannya bentuk 3D merupakan upaya yang diusung pada teknologi Augmented Reality (AR). Menggunakan jari untuk operasi komputer pada multi-device membuat sistem yang lebih interaktif. Marker-based AR merupakan salah satu jenis AR yang menggunakan marker dalam deteksinya. Penelitian ini merancang sistem AR dengan mendeteksi ujung jari sebagai marker. Sistem ini dirancang menggunakan metode deep learning Region-based Fully Convolutional Network (R-FCN). Metode ini mengembangkan hasil deteksi yang didapat dari Fully Connected Network (FCN). Hasil deteksi akan diintegrasikan dengan pointer komputer untuk operasi dasar. Penelitian ini menggunakan skema step training yang telah ditentukan untuk mendapatkan parameter IoU, presisi dan akurasi yang terbaik. Skema pada penelitian ini menggunakan skema step yaitu: 25K, 50K dan 75K step. Presisi tinggi menciptakan perubahan titik centroid yang tidak terlalu jauh. Akurasi  yang tinggi dapat meningkatkan kinerja AR dalam kondisi pergerakan yang cepat dan kondisi jari yang tidak tepat. Perancangan sistem menggunakan dataset berupa citra jari telunjuk dengan konfigurasi 10.800 data latih dan 3.600 data uji. Model akan diuji pada tiap skema dilakukan menggunakan video pada jarak, lokasi dan waktu yang berbeda. Penelitian ini menghasilkan hasil terbaik pada skema step 25K dengan IoU sebesar 69%, presisi sebesar 5,56 dan akurasi sebesar 96%.Kata kunci: Augmented Reality, Region-based Convolutional Network, Fully Convolutional Network, Pointer, Step training 


2014 ◽  
Vol 8 ◽  
Author(s):  
Kleissas Dean M. ◽  
Gray William R. ◽  
Burck James M. ◽  
Vogelstein Joshua T. ◽  
Perlman Eric ◽  
...  

HPB ◽  
2019 ◽  
Vol 21 ◽  
pp. S180 ◽  
Author(s):  
J.B. Seal ◽  
C. Stewart ◽  
J. McGee ◽  
T. Nguyen ◽  
D. Sonnier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document