scholarly journals Induction and propagation of transient synchronous activity in neural networks endowed with short-term plasticity

Author(s):  
Shengdun Wu ◽  
Kang Zhou ◽  
Yuping Ai ◽  
Guanyu Zhou ◽  
Dezhong Yao ◽  
...  
2005 ◽  
Vol 93 (3) ◽  
pp. 1486-1497 ◽  
Author(s):  
Jeremy D. Cohen ◽  
Manuel A. Castro-Alamancos

Learning of motor skills may occur as a consequence of changes in the efficacy of synaptic connections in the primary motor cortex. We investigated if learning in a reaching task affects the excitability, short-term plasticity, and long-term plasticity of horizontal connections in layers II–III of the motor cortex. Because training in this task requires animals to be food-deprived, we compared the trained animals with similarly food-deprived untrained animals and normal controls. The results show that the excitability, short-term plasticity, and long-term plasticity of the studied horizontal connections were unaffected by motor learning. However, stress-related effects produced by food deprivation and handling significantly enhanced the expression of long-term depression in these pathways. These results are compatible with the hypothesis that the acquisition of a complex motor skill produces bi-directional changes in synaptic strength that are distributed throughout the complex neural networks of motor cortex, which remains synaptically balanced during learning. The results are incompatible with the idea that learning causes large unidirectional changes in the population response of these neural networks, which may occur instead during certain behavioral states, such as stress.


2014 ◽  
Vol 90 (2) ◽  
Author(s):  
Matteo di Volo ◽  
Raffaella Burioni ◽  
Mario Casartelli ◽  
Roberto Livi ◽  
Alessandro Vezzani

2019 ◽  
Vol 31 (9) ◽  
pp. 1789-1824
Author(s):  
Teun van Gils ◽  
Paul H. E. Tiesinga ◽  
Bernhard Englitz ◽  
Marijn B. Martens

Behavior is controlled by complex neural networks in which neurons process thousands of inputs. However, even short spike trains evoked in a single cortical neuron were demonstrated to be sufficient to influence behavior in vivo. Specifically, irregular sequences of interspike intervals (ISIs) had a more reliable influence on behavior despite their resemblance to stochastic activity. Similarly, irregular tactile stimulation led to higher rates of behavioral responses. In this study, we identify the mechanisms enabling this sensitivity to stimulus irregularity (SSI) on the neuronal and network levels using simulated spiking neural networks. Matching in vivo experiments, we find that irregular stimulation elicits more detectable network events (bursts) than regular stimulation. Dissecting the stimuli, we identify short ISIs—occurring more frequently in irregular stimulations—as the main drivers of SSI rather than complex irregularity per se. In addition, we find that short-term plasticity modulates SSI. We subsequently eliminate the different mechanisms in turn to assess their role in generating SSI. Removing inhibitory interneurons, we find that SSI is retained, suggesting that SSI is not dependent on inhibition. Removing recurrency, we find that SSI is retained due to the ability of individual neurons to integrate activity over short timescales (“cell memory”). Removing single-neuron dynamics, we find that SSI is retained based on the short-term retention of activity within the recurrent network structure (“network memory”). Finally, using a further simplified probabilistic model, we find that local network structure is not required for SSI. Hence, SSI is identified as a general property that we hypothesize to be ubiquitous in neural networks with different structures and biophysical properties. Irregular sequences contain shorter ISIs, which are the main drivers underlying SSI. The experimentally observed SSI should thus generalize to other systems, suggesting a functional role for irregular activity in cortex.


Sign in / Sign up

Export Citation Format

Share Document