Modern tectonic stress field in the Chinese mainland inverted from focal mechanism solutions

1999 ◽  
Vol 12 (4) ◽  
pp. 390-397 ◽  
Author(s):  
Xing-Xin Du ◽  
Hui-Cheng Shao
2020 ◽  
Author(s):  
Guangyin Xu ◽  
Qing Wu ◽  
Suyun Wang

<p>The Ngari area in Tibet is in the forefront of land-continent collisions. The area is accompanied by the polymerization of plates, forming complex structures such as the Tethys Himalayan pleat belt, the Yarlung Zangbo suture belt, and the Gangdese continental margin magma arc from the south to the north. The multi-period dive collision-inland convergence process, the geological structure is complex and the seismicity is very high. Based on the Chinese historical earthquake catalogue, the China Modern Earthquake Catalogue and the seismic data from the International Seismological Center (ISC), we analyzed the seismic activity, focal mechanism and modern tectonic stress field in the Ngari area, and then analyzed the seismicity and its source of geodynamics. The main conclusions are as follows:(1) The seismic activities in the Ngari area are mainly distributed in the Himalayan tectonic belt, the Bangong-Nujiang tectonic belt, the Alkin-East Kunlun tectonic belt, and some near north-south trending tectonic belts; (2) Earthquakes near the Himalayan tectonic belt is dominated by reverse faulting events. The seismic activity near the Bangong-Nujiang tectonic belt and the Alkin-East Kunlun tectonic belt is dominated by strike-slip earthquakes. Near the north-south extensional tectonic belt, the earthquakes show as the normal faulting events. (3) The main direction of the modern tectonic stress field in the study area is near north-south direction; (4) Seismic activity, focal mechanism and modern tectonic stress field show that the geodynamic source in the Ngari region is from Collision and squeezing the between the Eurasian plate and the Indian Ocean plate.</p>


2021 ◽  
Vol 18 (6) ◽  
pp. 1007-1021
Author(s):  
Chengwei Yang ◽  
Chenghu Wang ◽  
Mingruo Jiao ◽  
Yujiang Li ◽  
Pu Wang

Abstract Regional tectonic stress fields are key crustal stress elements that drive tectonic movements and are associated with regional tectonics and geological resources. Regional tectonic stress field evolution of the Jinzhou area, located in the eastern block of the North China Craton (NCC), may provide a deeper understanding of tectonics of western Liaoning and the NCC. This work conducted borehole television, hydraulic fracturing and focal mechanism solutions to invert the paleo and present regional tectonic stress fields. Four groups of tensile fracture in the southern Jinzhou area were identified via borehole television, and their azimuths were NNW–SSE, NWW–SEE, nearly W–E and NE–SW in temporal order representing four stages of extensional tectonic events. Hydraulic fracturing and focal mechanism solutions showed that the stress status was normal fault and strike-slip, revealing that the southern Jinzhou area is undergoing NEE–SWW-oriented compression and nearly N–S-oriented extension in accordance with the strike-slip mechanism. From the Early Cretaceous to the present, the direction of the regional extensional stress in the southern Jinzhou area has evolved counterclockwise and sequentially from NNW–SSE to NWW–SEE, W–E, NE–SW and nearly N–S, and the regional tectonic mechanism has transited from extension to extension-strike-slip to strike-slip, leading to the current tectonic framework.


Sign in / Sign up

Export Citation Format

Share Document