eurasian plate
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 128)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Efthimios Karymbalis ◽  
Konstantinos Tsanakas ◽  
Ioannis Tsodoulos ◽  
Kalliopi Gaki-Papanastassiou ◽  
Dimitrios Papanastassiou ◽  
...  

Marine terraces are geomorphic markers largely used to estimate past sea-level positions and surface deformation rates in studies focused on climate and tectonic processes worldwide. This paper aims to investigate the role of tectonic processes in the late Quaternary evolution of the coastal landscape of the broader Neapolis area by assessing long-term vertical deformation rates. To document and estimate coastal uplift, marine terraces are used in conjunction with Optically Stimulated Luminescence (OSL) dating and correlation to late Quaternary eustatic sea-level variations. The study area is located in SE Peloponnese in a tectonically active region. Geodynamic processes in the area are related to the active subduction of the African lithosphere beneath the Eurasian plate. A series of 10 well preserved uplifted marine terraces with inner edges ranging in elevation from 8 ± 2 m to 192 ± 2 m above m.s.l. have been documented, indicating a significant coastal uplift of the study area. Marine terraces have been identified and mapped using topographic maps (at a scale of 1:5000), aerial photographs, and a 2 m resolution Digital Elevation Model (DEM), supported by extensive field observations. OSL dating of selected samples from two of the terraces allowed us to correlate them with late Pleistocene Marine Isotope Stage (MIS) sea-level highstands and to estimate the long-term uplift rate. Based on the findings of the above approach, a long-term uplift rate of 0.36 ± 0.11 mm a−1 over the last 401 ± 10 ka has been suggested for the study area. The spatially uniform uplift of the broader Neapolis area is driven by the active subduction of the African lithosphere beneath the Eurasian plate since the study area is situated very close (~90 km) to the active margin of the Hellenic subduction zone.


2022 ◽  
pp. SP521-2021-168
Author(s):  
Jun Wang ◽  
Yujie Yuan ◽  
Dexian Zhang ◽  
Su-Chin Chang

AbstractSituated within the southern segment of the South China Block (SCB), the Ganzhou Basin formed due to subduction of the paleo-Pacific plate beneath to the SCB. Late Cretaceous successions in this basin consist of fluvial and lacustrine facies red beds hosting abundant dinosaur and dinosaur egg fossils. This study reports detrital zircon geochronological data from a crystallized tuff and four sandstones found in the Late Cretaceous Ganzhou Group of the Ganzhou Basin. Age distributions included four major age subpopulations of predominantly Triassic, Devonian-Ordovician, Neoproterozoic and Paleoproterozoic ages. These indicate source material derived from Yanshanian and Triassic granitoids as well as from Kwangsian and Jiangnan orogens. Age signatures generally resemble those recorded in the adjacent Nanxiong Basin but also include distinctive features. Provenance signatures from successive units indicate a tectonic transition from intracontinental extension at ∼120 Ma to compression near the Cretaceous/Paleogene boundary. This tectonic transition was probably driven by continent-continent collision between the Indian and Eurasian plates, as well as by a shift in the subduction direction of the paleo-Pacific plate beneath the Eurasian plate.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5776518


2021 ◽  
Vol 12 (2) ◽  
pp. 100-108
Author(s):  
A. Miftahul Khair ◽  
Rigoan Malawat ◽  
Usman Barus Ohorella

Indonesia, including the Maluku Islands, is included in an earthquake and tsunami-prone area because it is the meeting point of the Eurasian Plate and the Australian Plate. Improving preparedness aims to prepare people, so they don't panic too much when a disaster occurs to save themselves and their families from minimizing losses. Most of the people of Negeri Rutah work as fishermen and move around the coast, thus placing the community at high risk of earthquakes and tsunamis. This quantitative research uses a quasi-experimental method: pre-post test without a control group. The research sample is the coastal community of the State of Rutah, totaling 84 families. Counseling using disaster preparedness videos and earthquake and tsunami booklets. The results showed that didn't normally distribute the data with the Wilcoxon test results before and after intervention, p-value=0.001 (p<0.005), meaning that there was a significant effect of counseling on emergency response to the earthquake and tsunami on increasing preparedness of coastal communities in Negeri Rutah. The community and local government are expected to follow updates related to disaster preparedness, either seeking information through social media or participating in disaster-related socialization.


2021 ◽  
Vol 13 (24) ◽  
pp. 5142
Author(s):  
Yujiang Li ◽  
Yongsheng Li ◽  
Xingping Hu ◽  
Haoqing Liu

Different types of focal mechanism solutions for the 19 March 2021 Mw 5.7 Nakchu earthquake, Tibet, limit our understanding of this earthquake’s seismogenic mechanism and geodynamic process. In this study, the coseismic deformation field was determined and the geometric parameters of the seismogenic fault were inverted via Interferometric Synthetic Aperture Radar (InSAR) processing of Sentinel-1 data. The inversion results show that the focal mechanism solutions of the Nakchu earthquake are 237°/69°/−70° (strike/dip/rake), indicating that the seismogenic fault is a NEE-trending, NW-dipping fault dominated by the normal faulting with minor sinistral strike-slip components. The regional tectonic stress field derived from the in-situ stress measurements shows that the orientation of maximum principal compressive stress around the epicenter of the Nakchu earthquake is NNE, subparallel to the fault strike, which controlled the dominant normal faulting. The occurrence of seven M ≥ 7.0 historical earthquakes since the M 7.0 Shenza earthquake in 1934 caused a stress increase of 1.16 × 105 Pa at the hypocenter, which significantly advanced the occurrence of the Nakchu earthquake. Based on a comprehensive analysis of stress fields and focal mechanisms of the Nakchu earthquake, we propose that the dominated normal faulting occurs to accommodate the NE-trending compression of the Indian Plate to the Eurasian Plate and the strong historical earthquakes hastened the process. These results provide a theoretical basis for understanding the geometry and mechanics of the seismogenic fault that produced the Nakchu earthquake.


2021 ◽  
Vol 13 (23) ◽  
pp. 4937
Author(s):  
Yunfei Xiang ◽  
Hao Wang ◽  
Yuanyuan Chen ◽  
Yin Xing

In this paper, we perform a comprehensive analysis of contemporary three-dimensional crustal deformations over the Tibetan Plateau. Considering that the coverage of continuous GNSS sites in the Tibetan Plateau is sparse, a newly designed method that mainly contains Spatial Structure Function (SSF) construction and Median Spatial Filtering (MSF) is adopted to conduct GNSS imaging of point-wise velocities, which can well reveal the spatial pattern of vertical crustal motions. The result illustrates that the Himalayan belt bordering Nepal appears significant uplift at the rates of ~3.5 mm/yr, while the low-altitude regions of Nepal and Bhutan near the Tibetan Plateau are undergoing subsidence. The result suggests that the subduction of the Indian plate is the driving force of the uplift and subsidence in the Himalayan belt and its adjacent regions. Similarly, the thrusting of the Tarim Basin is the main factor of the slight uplift and subsidence in the Tianshan Mountains and Tarim Basin, respectively. In addition, we estimate the strain rate changes over the Tibetan Plateau using high-resolution GNSS horizontal velocities. The result indicates that the Himalayan belt and southeastern Tibetan Plateau have accumulated a large amount of strain rate due to the Indian-Eurasian plate collision and blockage of the South China block, respectively.


2021 ◽  
Author(s):  
Rusab Baig ◽  
Isra Abdul ◽  
Dattatreya Mukherjee

Earthquake in Assam and north Bengal in IndiaOn April 28, 2021, a 6.4 Richter scale earthquake affected the Sonitpur district of Assam, the tremors of which were felt in north Bengal and other parts of North-East India, as reported by the National Centre for Seismology1. Six more tremors followed the first shake 2. There were reports of widespread damage to buildings and other structures from across Assam, mostly in the central and western towns of Tezpur, Nagaon, Guwahati, Mangaldoi, Dhekiajuli, and Morigaon3. Again on May 3rd, 2021, an earthquake was felt in the Sonitpur district of Assam with a 3.7 magnitude on the Richter scale4. Assam disaster management authority reported that 10 people from 4 districts suffered physical injuries since the first attack on April 28, 2021, and some more time will be needed to know about the actual amount of damage that had taken place5. According to the National Centre for Seismology, the area affected by the earthquake is seismically very active and falls in the highest seismic hazard zone where the Indian tectonic plate subducts with the Eurasian plate because of which there are high chances of future quakes as well6.


Author(s):  
Ida Surya Surya ◽  
I Gusti Ngurah Suwetha

Geologically, Indonesia is located at the confluence of three of the world's main plates, namely the Indo-Australian Plate, the Eurasian Plate, and the Pacific Plate, which often cause disasters, for example drought. Central Lombok Regency is one of the regencies in West Nusa Tenggara, with these two seasons, most often hit by drought disasters, considering that the rainfall in Central Lombok is very small. So that disaster education and preparedness are needed for residents. This article uses qualitative research methods. The results of the study show that climate field schools have an important role in disaster education. Climate field school is a form of education for farmers that is very useful especially in understanding the weather and climate combined with new agricultural techniques that will allow farmers to plant different crops at different times of the year. Meanwhile, for preparedness, it is carried out through several programs in the form of urging and asking farmers to be disciplined in carrying out cropping patterns according to the zoning in which they are located (rice-padi-palawija or padi-palawija-palawija), mapping of land related to cropping patterns, planting rice parity that requires little water, namely the Situpagendit variety, and urges farmers to insure their rice plants, which is Rp. 36.000/ Ha for one planting season at PT. JASINDI.   Keywords: Indonesia's geological location, disaster, disaster education.


2021 ◽  
pp. 417
Author(s):  
Daniel Christianto ◽  
Sunarjo Leman ◽  
Alvira Nathania Tanika ◽  
Maria Kevinia Sutanto ◽  
Vryscilia Marcella

A natural disaster is a natural event that has a major impact on the human population. One of the natural events that became the focus of this PKM activity was an earthquake. Earthquakes are natural events in the form of vibrations or wavy movements on the earth's crust caused by internal forces. Earthquakes caused by shifting of the ground are called tectonic earthquakes and earthquakes caused by volcanoes are called volcanic earthquakes. Indonesia is an earthquake-prone area because it is located on three plates, namely the Eurasian Plate, the Pacific Plate, and the Indo-Australian Plate. Only in western, central and southern Kalimantan, the source of the earthquake was not found. To reduce the impact of risk during an earthquake, it is necessary to carry out an earthquake mitigation to the community in areas prone to earthquakes. Earthquake mitigation that will be carried out in this PKM activity is in the form of counseling through online webinars to prevent physical contact or crowds, related to the Covid19 pandemic. As a result, from the questions asked by participants, there is still a lack of understanding of the dangers of changing the function of the building or the building's use limit based on the design load and the condition of the building after the earthquake. So for the next PKM, it is recommended to make general information guidelines such as examples of photos or pictures about the condition of buildings that need to be reviewed for repairs or are no longer suitable for use after being hit by an earthquake.Bencana alam adalah suatu peristiwa alam yang mengakibatkan dampak besar bagi populasi manusia. Salah satu peristiwa alam yang menjadi fokus dalam kegiatan PKM ini adalah gempa bumi. Gempa bumi merupakan fenomena alam berupa getaran atau gerakan bergelombang pada lempeng bumi yang disebabkan oleh tenaga yang berasaldari dalam bumi. Gempa yang disebabkan oleh pergeseran tanah dinamakan gempa tektonik dan gempa yang disebabkan oleh gunung berapi dinamakan gempa vulkanik. Indonesia merupakan daerah rawan gempa karena terletak di atas tiga lempeng yakni Lempeng Eurasia, Lempeng Pasifik, dan Lempeng Indo-Australia. Hanya di Kalimantan bagian barat, tengah, dan selatan, sumber gempa bumi tidak ditemukan. Untuk mengurangi dampak resiko pada saat gempa perlu dilakukan suatu mitigasi gempa kepada masyarakat di daerah yang rawan terjadi gempa bumi. Mitigasi gempa yang akan dilakukan dalam kegiatan PKM ini berupa penyuluhan melalui webinar secara online untuk mencegah kontak fisik atau kerumunan, berhubungan dengan pandemi Covid19. Hasilnya, dari pertanyaan yang diajukan peserta, masih kurang pemahaman bahaya dari mengubah fungsi guna bangunan atau batas guna bangunan berdasarkan beban desain dan kondisi bangunan setelah gempa. Maka untuk PKM selanjutnya, disarankan membuat panduan informasi secara umum seperti contoh foto atau gambar tentang kondisi bangunan yang perlu ditinjau untuk perbaikan atau tidak layak guna lagi setelah terkena gempa.


2021 ◽  
Vol 2110 (1) ◽  
pp. 012002
Author(s):  
A R Puhi ◽  
P Ariyanto ◽  
B Pranata ◽  
B S Prayitno

Abstract Lampung region is seismically and volcanic active because located in subduction zone of Indo-Australian and Eurasian plate. We applied receiver function and stacking H-k analysis to estimate the crustal structure in Lampung region. We used teleseismic earthquake data (epicenter distance 30°-90°) and M>6 recorded at 3 seismic broadband stations owned by Agency for Meteorology Climatology and Geophysics (BMKG). Those stations are PSLI (located on Sebesi Island approximately 20 km from Anak Krakatau) represented volcanic arc zone, KASI (located on Kota Agung, Lampung) represented Sumatran Fault Zone and KLI (located on Kotabumi, Lampung) represented back-arc basin. Crustal thickness estimated at PSLI station 32-36 km, KASI station 36-40 km, and KLI station 30-36 km. Furthermore, in 3 stations P wave velocity estimated 4.1-11 km/s, S wave velocity 2.2-6.2 km/s, while vp/vs value estimated 1.7-2.05. We estimated Anak Krakatau volcano’s magma chamber beneath PSLI station in depth 16-30 km, Great Sumatran Fault structure in depth about 8-14 km beneath KASI station, and thick sediment layer about 4 km near surface beneath KLI station. This study result is expected to explain more detail crustal of Lampung region and can be useful for developing of BMKG’s seismic monitoring systems and other geophysical fields in future.


2021 ◽  
Vol 929 (1) ◽  
pp. 012006
Author(s):  
E S Przhiyalgovskii

Abstract The detailed geological profile “Karabuk” constructed in recent years, crossing the triad of alpine structures “Naryn Depression - Baibichetoo Uplift - Atbashi Depression [[CHECK_DOUBLEQUOT_ENT]] in the central part of Tien Shan, provides new material for studying the style and parameters of deformations at the late phase of the Indian - Eurasian plate collision. Using original methodological techniques and in accordance with the basic principles of balanced sections method, the horizontal deformation of the rock complex of the Cenozoic sedimentary cover (a meridional reduction in the width of the orogenic belt) was determined, starting from the end of the Neogene. Variations in the thickness of the cover layers determined during the research were taken into account. The presented tectonic reconstruction demonstrates the structure of a single Naryn-Atbashi sedimentary basin before the intense deformations at the late orogenic phase. It is significant, that the magnitude of deformations on individual segments of the profile differs markedly. The cover of the Atbashi depression is more deformed, its width has decreased by 6 km (about 17%) in this section, while the borders of the wider Naryn depression have converged by only 3.7 km (8%). The total South-North contraction of the NBA system measured by us during the Cenozoic is about 10 km (12% of its original width). The values of the contraction from south to north (the horizontal component of the deformation) obtained by us compared with the values given by other researchers.


Sign in / Sign up

Export Citation Format

Share Document