scholarly journals Differentiation of embryonic stem cells into fibroblast-like cells in three-dimensional type I collagen gel cultures

2010 ◽  
Vol 47 (2) ◽  
pp. 114-124 ◽  
Author(s):  
Shinsaku Togo ◽  
Tadashi Sato ◽  
Hisatoshi Sugiura ◽  
Xingqi Wang ◽  
Hesham Basma ◽  
...  
Biomaterials ◽  
2006 ◽  
Vol 27 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Laurent Galois ◽  
Sandrine Hutasse ◽  
Delphine Cortial ◽  
Cécile F. Rousseau ◽  
Laurent Grossin ◽  
...  

2010 ◽  
Vol 19 (12) ◽  
pp. 1923-1935 ◽  
Author(s):  
Meredith B. Jones ◽  
Chia H. Chu ◽  
James C. Pendleton ◽  
Michael J. Betenbaugh ◽  
Joseph Shiloach ◽  
...  

Stem Cells ◽  
2006 ◽  
Vol 24 (2) ◽  
pp. 284-291 ◽  
Author(s):  
Nathaniel S. Hwang ◽  
Myoung Sook Kim ◽  
Somponnat Sampattavanich ◽  
Jin Hyen Baek ◽  
Zijun Zhang ◽  
...  

1996 ◽  
Vol 109 (7) ◽  
pp. 1875-1889 ◽  
Author(s):  
A. Zuk ◽  
K.S. Matlin

A number of epithelia form tubulocysts in vitro when overlaid with type I collagen gel. Because collagen receptors are generally believed to be expressed on the basolateral domain, the mechanism by which collagen elicits this morphogenetic response from the apical surface is unclear. To investigate the role of beta 1 integrins, the major receptor family for collagen, in this process, we overlaid polarized monolayers of MDCK II cells grown on permeable supports with type I collagen gel and correlated integrin polarity with the polarity of other apical and basolateral membrane markers during tubulocyst formation. Polarized monolayers of one clone of MDCK II cells, referred to as Heidelberg MDCK, initially respond to collagen overlay by stratifying; within 48 hours, lumena develop between the cell layers giving rise to tubulocysts. Tight junctions remain intact during tubulocyst formation because transepithelial electrical resistance does not significantly change. Major alterations are observed, however, in the expression and localization of apical and basolateral membrane markers. beta 1 integrins are necessary for tubulocyst morphogenesis because a function-blocking antibody administered to the apical pole of the cells completely inhibits the formation of these structures. To determine how apical-cell collagen interactions elicit tubulocyst formation, we examined whether beta 1 integrins are mobilized to apical plasma membranes in response to collagen overlay. We found that in the absence of collagen, polarized monolayers of Heidelberg MDCK cells endogenously express on apical plasma membranes a small pool of the beta 1 family, including alpha 2 beta 1 and alpha 3 beta 1. Collagen overlay does not mobilize additional beta 1 integrins to apical domains. If beta 1 integrins are not already apically expressed, as in the C6 MDCK cell line (Schoenenberger et al. (1994) J. Cell Biol. 107, 527–541), beta 1 integrins are not directed apically and tubulocysts do not develop in response to collagen. Thus, interaction of beta 1 integrin pre-existing on apical plasma membranes of polarized epithelia with type I collagen gel is the mechanism by which apical application of collagen elicits the formation of tubulocysts. Depolarized integrins on apical plasma membranes of polarized epithelia may be relevant to the pathogenesis of disease and injury.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Jijun Hao ◽  
Cristi L Galindo ◽  
Radwan N Safa ◽  
Truc-Linh Tran ◽  
Douglas B Sawyer

Jijun Hao, Cristi L. Galindo, Radwan N. Safa, Truc-Linh Tran, Douglas B. Sawyer Neuregulin-1 (NRG-1) plays a critical role in heart development by signaling through type I receptor tyrosine kinases in the erbB family (erbB2, erbB3 and erbB4). Mice with disrupted expression of NRG-1, ErbB2, ErbB3 or ErbB4 die in utero with failure of cardiac development. We have previously shown that NRG-1 has distinct effects on two embryonic progenitor cell populations that express ErbB2 and ErbB3 receptors. In an embryonic endothelial progenitor cell line (eEPCs) NRG-1 treatment induces phosphorylation of Akt, GSK-3β, and Erk1/2, and protects eEPCs against serum deprivation-induced apoptosis. In embryonic stem cells (ESCs) we find that NRG-1 treatment from day 0∼2 induces cardiomyocyte formation by day 8 in culture, and when ErbB3 is knocked down in the ESCs, NRG-1 fails to promote cardiomyogenesis. To understand early molecular events that might regulate these distinct effects, we analyzed global transcriptional changes induced by NRG-1 in both eEPCs and ESCs using microarrays. There were only 244 significantly differential (p value < 0.05, fold-change > 1.5) genes detected in NRG-1-treated ESCs, while NRG-1 induced differential expression of 1,547 transcripts in eEPCs. Based on functional analysis, the most significantly over-represented function (Fishers Exact Test, p value with FDR < 0.05) in ESCs was “cell morphogenesis during differentiation”. In eEPCs, genes regulated via Ras/MAPK signaling were altered, as were those downstream of the Akt-PI3K pathway and calcium signaling. For both cell lines, the most statistically significant transcription factor identified as a regulator of the genes altered in response to NRG-1 was SRF, consistent with a role for NRG-1 in heart development and regeneration. Based on the results of this study, we constructed a putative signaling pathway whereby NRG mediates cardiomyogenesis in pluripotent stem cells that correlates with phenotypic observations.


Sign in / Sign up

Export Citation Format

Share Document