scholarly journals In Silico Screening of Potential Spike Glycoprotein Inhibitors of SARS-CoV-2 with Drug Repurposing Strategy

2020 ◽  
Vol 26 (9) ◽  
pp. 663-669 ◽  
Author(s):  
Tian-zi Wei ◽  
Hao Wang ◽  
Xue-qing Wu ◽  
Yi Lu ◽  
Sheng-hui Guan ◽  
...  
2020 ◽  
Author(s):  
Bharath B R ◽  
Hrishikesh Damle ◽  
Shiban Ganju ◽  
LathaDamle

Abstract Human coronavirus (SARS-CoV-2) is causing a pandemic with significant morbidity and mortality. Although, no effective novel drugs are available, drug repurposing is emerging as an effective strategy. In this study, we present an in silico drug repurposing study implementing successful concepts of computer aided drug design (CADD) technology with an objective to repurpose known drugs to interfere the viral cellular entry via the spike glycoprotein (SARS-CoV-2-S), which mediates the virus–cell receptor interaction. SARS-CoV-2-S uses ACE2 to enter cells. Totally, 4015 known and approved small molecules were screened for interaction with SARS-CoV-2 S through docking studies and 15 lead molecules were shortlisted. Further, three molecules streptomycin, ciprofloxacin and Glycyrrhizic acid (GA) were selected based on their reported anti-viral activity, safety, availability, affordability and subjected for Molecular Dynamics (MD) simulation. The MD simulation results indicate that GA from plant origin may be repurposed against SARS-CoV-2 and further studies are needed for validation.


2021 ◽  
Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Jelena Milicevic ◽  
Tamara Todorovic ◽  
Radivoje Prodanovic ◽  
...  

The need for an effective drug against COVID-19, is, after almost 18 months since the global pandemics outburst, still very high. A very quick and safe approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 PLpro promotes vi-ral replication and modulates the host immune system, resulting in inhibition of the host antiviral innate immune response, and there-fore is an attractive drug target. In this study, we used a combined in silico virtual screening candidates for SARS-CoV-2 PLpro protease inhibitors. We used the Informational spectrum method applied for Small Molecules for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 44 drugs as potential SARS-CoV-2 PLpro inhibitors that we propose for further experimental testing.


2021 ◽  
Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Jelena Milicevic ◽  
Tamara Todorovic ◽  
Radivoje Prodanovic ◽  
...  

In the current pandemic finding an effective drug to prevent or treat the infection is the highest priority. A rapid and safe approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 PLpro promotes viral replication and modulates the host immune system, resulting in inhibition of the host antiviral innate immune response, and therefore is an attractive drug target. In this study, we used a combined in silico virtual screening for candidates for SARS-CoV-2 PLpro protease inhibitors. We used the Informational spectrum method applied for Small Molecules for searching the Drugbank database followed by molecular docking. After in silico screening of drug space, we identified 44 drugs as potential SARS-CoV-2 PLpro inhibitors that we propose for further experimental testing.


2021 ◽  
Vol 8 ◽  
Author(s):  
Perumal Gobinath ◽  
Ponnusamy Packialakshmi ◽  
Kaliappillai Vijayakumar ◽  
Magda H. Abdellattif ◽  
Mohd Shahbaaz ◽  
...  

2020 ◽  
Author(s):  
Tianzi Wei ◽  
Hao Wang ◽  
Xueqing Wu ◽  
Yi Lu ◽  
Shenghui Guan ◽  
...  

Abstract COVID-19 has globally spread and has become a new pandemic, but there are still no effective drugs or vaccines to treat or prevent this disease. SARS-CoV-2 invades human cells through its spike proteins interacting with human ACE2 receptors, which may cause severe respiratory syndrome. One strategy to prevent the virus from entering cells is the interruption of the viral spike protein interacting with human ACE2. Facing such an urgent situation, drug repurposing is a promising strategy for rapid drug development. Here, we selected approximately 15000 molecular candidates, including FDA-approved drugs from DrugBank and natural compounds from TCMSP, to perform virtual screening for potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human ACE2 receptor and viral spike protein. We found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin, which is extracted from indigo naturalis and polygoni tinctorii foliu, in TCMSP had the highest docking scores. Note that indigo naturalis and the other herbs we found have been applied to prevent infectious diseases in traditional Chinese medicine. We also found that raltegravir, an HIV integrase inhibitor, has a relatively high binding affinity. All the docking results are presented in this article. Based on these docking results, further work will continue to identify potential molecules to prevent the spike protein from binding with the ACE2 receptor.Authors Tianzi Wei and Hao Wang contributed equally to this work.


Author(s):  
Tianzi Wei ◽  
Hao Wang ◽  
Xueqing Wu ◽  
Yi Lu ◽  
Shenghui Guan ◽  
...  

Abstract COVID-19 has globally spread and has become a new pandemic, but there is still no effective drugs or vaccines to treat or prevent this disease. SARS-Cov-2 invades human cells through its spike proteins interacting with human ACE2 receptors. One strategy to prevent the virus from entering cells is the interruption of the viral spike protein interacting with ACE2. In such an emergent situation, drug repurposing is a promising method for rapid drug development. Here, we selected around 15000 molecular candidates including FDA-approved drugs from DrugBank and natural compounds from TCMSP to perform virtual screening for potential molecules that can target viral spike protein based on its crystal structure. In this article, we present the top 20 molecules with high binding affinity with spike protein, of which, digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP, extracted from indigo naturalis and polygoni tinctorii foliu, have the highest docking scores. In addition, we also found that raltegravir, an HIV integrase inhibitor, has a relatively high binding score. Those molecules with high binding capacity to spike glycoprotein might be used by other researchers for further anti-COVID-19 drug development.


Sign in / Sign up

Export Citation Format

Share Document