scholarly journals Drug Repurposing for Candidate SARS-CoV-2 Papain-like protease (PLpro) Inhibitors by a combined in Silico Method

Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Jelena Milicevic ◽  
Tamara Todorovic ◽  
Radivoje Prodanovic ◽  
...  

The need for an effective drug against COVID-19, is, after almost 18 months since the global pandemics outburst, still very high. A very quick and safe approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 PLpro promotes vi-ral replication and modulates the host immune system, resulting in inhibition of the host antiviral innate immune response, and there-fore is an attractive drug target. In this study, we used a combined in silico virtual screening candidates for SARS-CoV-2 PLpro protease inhibitors. We used the Informational spectrum method applied for Small Molecules for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 44 drugs as potential SARS-CoV-2 PLpro inhibitors that we propose for further experimental testing.

2021 ◽  
Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Jelena Milicevic ◽  
Tamara Todorovic ◽  
Radivoje Prodanovic ◽  
...  

In the current pandemic finding an effective drug to prevent or treat the infection is the highest priority. A rapid and safe approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 PLpro promotes viral replication and modulates the host immune system, resulting in inhibition of the host antiviral innate immune response, and therefore is an attractive drug target. In this study, we used a combined in silico virtual screening for candidates for SARS-CoV-2 PLpro protease inhibitors. We used the Informational spectrum method applied for Small Molecules for searching the Drugbank database followed by molecular docking. After in silico screening of drug space, we identified 44 drugs as potential SARS-CoV-2 PLpro inhibitors that we propose for further experimental testing.


Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Snezana Pajovic ◽  
Miroslav Adzic ◽  
Slobodan Paessler ◽  
...  

<p>The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is <em>in silico</em> drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening (VS) protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the ISM applied for Small Molecules was used for searching the Drugbank database and further followed by molecular docking. After <em>in silico</em> screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.</p>


2020 ◽  
Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Snezana Pajovic ◽  
Miroslav Adzic ◽  
Slobodan Paessler ◽  
...  

<p>The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is <em>in silico</em> drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening (VS) protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the ISM applied for Small Molecules was used for searching the Drugbank database and further followed by molecular docking. After <em>in silico</em> screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.</p>


2020 ◽  
Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Snezana Pajovic ◽  
Miroslav Adzic ◽  
Slobodan Paessler ◽  
...  

<p>The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is <em>in silico</em> drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening (VS) protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the ISM applied for Small Molecules was used for searching the Drugbank database and further followed by molecular docking. After <em>in silico</em> screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.</p>


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3830 ◽  
Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Snezana B. Pajovic ◽  
Miroslav Adzic ◽  
Slobodan Paessler ◽  
...  

The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the Informational spectrum method applied for small molecules was used for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.


2016 ◽  
Vol 35 (8) ◽  
pp. 1833-1848 ◽  
Author(s):  
Vivek Kumar Singh ◽  
Hsin-Huei Chang ◽  
Ching-Chuan Kuo ◽  
Hui-Yi Shiao ◽  
Hsing-Pang Hsieh ◽  
...  

2020 ◽  
Author(s):  
Rameez Jabeer Khan ◽  
Rajat Kumar Jha ◽  
Ekampreet Singh ◽  
Monika Jain ◽  
Gizachew Muluneh Amera ◽  
...  

<div>The recent COVID-19 pandemic caused by SARS-CoV-2 has recorded a high number of infected people across the globe. The notorious nature of the virus makes it necessary for us to identify promising therapeutic agents in a time-sensitive manner. The current study utilises an <i>in silico</i> based drug repurposing approach to identify potential drug candidates targeting non-structural protein 15 (NSP15), i.e. a uridylate specific endoribonuclease of SARS-CoV-2</div><div>which plays an indispensable role in RNA processing and viral immune evasion from the host immune system. NSP15 was screened against an in-house library of 123 antiviral drugs obtained from the DrugBank database from which three promising drug candidates were identified based on their estimated free energy of binding (<i>ΔG</i>), estimated inhibition constant (<i>Ki</i>), the orientation of drug molecules in the active site and the key interacting residues of</div><div>NSP15. The MD simulations were performed for the selected NSP15-drug complexes along with free protein to mimic on their physiological state. The binding free energies of the selected NSP15-drug complexes were also calculated using the trajectories of MD simulations of NSP15-drug complexes through MM/PBSA (Molecular Mechanics with Poisson-Boltzmann and surface area solvation) approach where NSP15-Simeprevir (-242.559 kJ/mol) and NSP15-Paritaprevir (-149.557 kJ/mol) exhibited the strongest binding affinities. Together with the results of molecular docking, global dynamics, essential dynamics and binding free energy analysis, we propose that Simeprevir and Paritaprevir are promising drug candidates for the inhibition of NSP15 and could act as potential therapeutic agents against SARS-CoV-2.</div>


Author(s):  
Kumar Sharp ◽  
Dr. Shubhangi Dange

Identification of potential drug-target interaction for approved drugs serves as the basis of repurposing drugs. Studies have shown polypharmacology as common phenomenon. In-silico approaches help in screening large compound libraries at once which could take years in a laboratory. We screened a library of 1050 FDA-approved drugs against spike glycoprotein of SARS-CoV2 in-silico. Anti-cancer drugs have shown good binding affinity which is much better than hydroxychloroquine and arbidol. We have also introduced a hypothesis named “Bump” hypothesis which and be developed further in field of computational biology.


2020 ◽  
Author(s):  
Kumar Sharp ◽  
Dr. Shubhangi Dange

Identification of potential drug-target interaction for approved drugs serves as the basis of repurposing drugs. Studies have shown polypharmacology as common phenomenon. In-silico approaches help in screening large compound libraries at once which could take years in a laboratory. We screened a library of 1050 FDA-approved drugs against spike glycoprotein of SARS-CoV2 in-silico. Anti-cancer drugs have shown good binding affinity which is much better than hydroxychloroquine and arbidol. We have also introduced a hypothesis named “Bump” hypothesis which and be developed further in field of computational biology.


Sign in / Sign up

Export Citation Format

Share Document