Effect of the Ammonia Flow on the Formation of Microstructure Defects in GaN Layers Grown by High-Temperature Vapor Phase Epitaxy

2016 ◽  
Vol 46 (3) ◽  
pp. 1612-1619 ◽  
Author(s):  
M. Barchuk ◽  
G. Lukin ◽  
F. Zimmermann ◽  
C. Röder ◽  
M. Motylenko ◽  
...  
2017 ◽  
Vol 214 (9) ◽  
pp. 1600753 ◽  
Author(s):  
G. Lukin ◽  
T. Schneider ◽  
M. Barchuk ◽  
F. Zimmermann ◽  
E. Niederschlag ◽  
...  

2019 ◽  
Vol 524 ◽  
pp. 125185 ◽  
Author(s):  
G. Lukin ◽  
T. Schneider ◽  
M. Förste ◽  
M. Barchuk ◽  
C. Schimpf ◽  
...  

2017 ◽  
Vol 468 ◽  
pp. 212-215 ◽  
Author(s):  
T. Schneider ◽  
G. Lukin ◽  
F. Zimmermann ◽  
M. Barchuk ◽  
E. Niederschlag ◽  
...  

2014 ◽  
Vol 11 (3-4) ◽  
pp. 491-494 ◽  
Author(s):  
G. Lukin ◽  
C. Röder ◽  
M. Barchuk ◽  
G. Schreiber ◽  
O. Pätzold ◽  
...  

2008 ◽  
Vol 310 (17) ◽  
pp. 4016-4019 ◽  
Author(s):  
Ken-ichi Eriguchi ◽  
Takako Hiratsuka ◽  
Hisashi Murakami ◽  
Yoshinao Kumagai ◽  
Akinori Koukitu

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xavier Isidro Pereira-Hernández ◽  
Andrew DeLaRiva ◽  
Valery Muravev ◽  
Deepak Kunwar ◽  
Haifeng Xiong ◽  
...  

Abstract In this work, we compare the CO oxidation performance of Pt single atom catalysts (SACs) prepared via two methods: (1) conventional wet chemical synthesis (strong electrostatic adsorption–SEA) with calcination at 350 °C in air; and (2) high temperature vapor phase synthesis (atom trapping–AT) with calcination in air at 800 °C leading to ionic Pt being trapped on the CeO2 in a thermally stable form. As-synthesized, both SACs are inactive for low temperature (<150 °C) CO oxidation. After treatment in CO at 275 °C, both catalysts show enhanced reactivity. Despite similar Pt metal particle size, the AT catalyst is significantly more active, with onset of CO oxidation near room temperature. A combination of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and CO temperature-programmed reduction (CO-TPR) shows that the high reactivity at low temperatures can be related to the improved reducibility of lattice oxygen on the CeO2 support.


Sign in / Sign up

Export Citation Format

Share Document