Statistical Analysis of Laser-Welded Blanks in Deep Drawing Process: Response Surface Modeling

Author(s):  
Ahmad Aminzadeh ◽  
Noushin Nasiri ◽  
Noureddine Barka ◽  
Ali Parvizi ◽  
Karen Abrinia ◽  
...  
Author(s):  
Slim Ben- Elechi ◽  
Hakim Naceur ◽  
Catherine Knopf-Lenoir ◽  
Jean-Louis Batoz

This work is focused on the minimization of the elastic deformed drawn parts after tools removing. We use a Response Surface Method based on Diffuse Approximation and a specific algorithm for the optimum searching. For the deep drawing process simulation, we use the Inverse Approach with stress improvements to take into account the bending and unbending effects. Internal efforts with the final workpiece shape are used for the springback calculation, using an Updated Lagrangian Formulation. Two deep drawing benchmarks are studied to validate the proposed procedure with reference to Abaqus® and Stampack® commercial codes.


2011 ◽  
Vol 121-126 ◽  
pp. 1495-1499
Author(s):  
Tsu Hsiao Chu ◽  
Kuang Hua Fuh ◽  
Wei Ching Yeh

A ultrasonic vibration system with ram motion of two steps is developed to optimize the formability for thin workpiece at the end of forming. The deep drawing force and forming height can be predicted in view of optimizing the values of the working variables involved in the process parameters. A response surface methodology (RSM) based on design of experiments was used in order to minimize the forming force and maximum the forming height during the deep drawing process. Associated plots are shown to be efficient for a quick choice of the optimum values of the forming process parameters.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3993
Author(s):  
Thanh Trung Do ◽  
Pham Son Minh ◽  
Nhan Le

The formability of the drawn part in the deep drawing process depends not only on the material properties, but also on the equipment used, metal flow control and tool parameters. The most common defects can be the thickening, stretching and splitting. However, the optimization of tools including the die and punch parameters leads to a reduction of the defects and improves the quality of the products. In this paper, the formability of the camera cover by aluminum alloy A1050 in the deep drawing process was examined relating to the tool geometry parameters based on numerical and experimental analyses. The results showed that the thickness was the smallest and the stress was the highest at one of the bottom corners where the biaxial stretching was the predominant mode of deformation. The problems of the thickening at the flange area, the stretching at the side wall and the splitting at the bottom corners could be prevented when the tool parameters were optimized that related to the thickness and stress. It was clear that the optimal thickness distribution of the camera cover was obtained by the design of tools with the best values—with the die edge radius 10 times, the pocket radius on the bottom of the die 5 times, and the punch nose radius 2.5 times the sheet thickness. Additionally, the quality of the camera cover was improved with a maximum thinning of 25% experimentally, and it was within the suggested maximum allowable thickness reduction of 45% for various industrial applications after optimizing the tool geometry parameters in the deep drawing process.


Author(s):  
Hamidreza Gharehchahi ◽  
Mohammad Javad Kazemzadeh-Parsi ◽  
Ahmad Afsari ◽  
Mehrdad Mohammadi

1993 ◽  
Vol 115 (2) ◽  
pp. 224-229 ◽  
Author(s):  
K. Yamaguchi ◽  
K. Kanayama ◽  
M. H. Parsa ◽  
N. Takakura

A new deep drawing process of sheet metals is developed to facilitate small-lot production of deep cups with large drawing ratio. In this process, unlike the conventional deep drawing method, a few drawn cups are always stacked on the punch and used as a part of punch for the subsequent deep drawing of a given blank. Before drawing a new blank, a drawn cup which is in contact with the punch is stripped off. The repetition of such stripping and drawing operations makes it possible to carry out both the first-stage drawing and the subsequent slight redrawings in one drawing operation using only one pair of punch and die. In this paper, this new deep drawing process is applied to the production of tapered cups and the main feature of the process is shown.


Sign in / Sign up

Export Citation Format

Share Document