drawing force
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 19)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
pp. 004051752110563
Author(s):  
Tao Wang ◽  
Xiaochuan Chen ◽  
Jun Wang ◽  
Yong Li

In order to study the variation of the drafting force of cotton slivers, a three-dimensional model of cotton slivers was proposed. The model is based on the three-dimensional network structure of the fibers in the cotton sliver. The three-dimensional network structure is simulated by an octahedron. Based on the similarity between dynamic drawing and static drawing, the static drawing simulation of the model is carried out by using ANSYS software, and the static drawing force of different quantitative cotton slivers is simulated. The results show that the average relative error of the static stretch force and dynamic drafting force is 8.09%, and the maximum relative error is less than 15%. Then, the equations of the dynamic drafting force and static stretch force are obtained by linear regression, and the drawing force under other quantitative conditions is successfully predicted. Finally, static stretching is used to simulate the influence curve of different roller spacings on the dynamic drafting force, and the results show that the simulation results are consistent with the actual situation. Therefore, the octahedral cotton sliver model is effective, and the simulation results also provide a reference for the approximate prediction of dynamic drafting force.


2021 ◽  
pp. 219-229
Author(s):  
Maria Kapustova ◽  
Michaela Kritikos ◽  
Jozef Bilik ◽  
Ladislav Morovic ◽  
Robert Sobota ◽  
...  

Author(s):  
Gustavo Aristides Santana Martínez ◽  
Oscar Rodriguez-Alabanda ◽  
Umberto Prisco ◽  
Marius Tintelecan ◽  
Leonardo Kyo Kabayama

AbstractThe cold wiredrawing process constitutes a classical-tribological system in which a stationary tribe-element (die) is in contact with a tribe-element in relative motion (wire) and both interacting with the interfacial tribe-element (lubricant). This condition is reflected in the effect of friction as a function of the drawing speed and temperature, and directly affects the wearing of the surface into the die and the final quality on the drawn wire. The aim of this work has been to determine the best conditions to process ETP-copper using two different types of oil/water emulsion lubricants. For this purpose, six different die geometries have been proposed and a set of tests have been carried out at different speeds (between 1 and 21 m/s) to determine those combinations that give a lower value in the required drawing force (Fd). The experiments allowed to know the friction coefficient (µ), the temperature profile inside the drawing die and in the lubricant and also the mean roughness (Ra) in the drawn product. The results have shown that drawing speeds above 10 m/s significantly decrease the drawing force and, as a consequence, the friction effect on the interface. The best results have been achieved in the combinations of the lower die angle (2β = 14°) with drawing speeds between 17 and 18 m/s with both types of lubricants used, obtaining the lower values of the friction coefficient between µ = 0.10–0.15 with the lubricant type D (Agip S234-60 oil at 7% concentration). It has been found that those tests carried out with dies with a smaller approach angle have generally made it possible to obtain better qualities in the final product. Additionally, FEM simulations have been done to analyse those cases with the lower values of µ, throwing values of Fd that are consistent with those measured in the experimental setting and allowing to better understand the behavior of the material as it passes through the die.


2021 ◽  
Vol 11 (19) ◽  
pp. 9235
Author(s):  
Hussein Zein ◽  
Osama M. Irfan

Deep drawing is characterized by extremely complex deformation that is influenced by process characteristics such as die and punch shapes, blank shape, blank holding force, material properties, and lubrication. The optimization of the deep drawing process is a challenging issue due to the complicated functions that define and relate the process parameters. However, the optimization is essential to enhance the productivity and the product cost in the deep drawing process. In this paper, a MATLAB toolbox (Pattern Search) was employed to minimize the maximum deep drawing force (Fd-min) at different values of the operating and the geometrical parameters. As a result, a minimum deep drawing force chart (carpet plot) was generated to show the best combination of friction coefficients at the blank contact interfaces. The extracted friction coefficients guided the selection of proper lubricants while minimizing the deep drawing force. A finite element analysis (FEA) was applied through 3D model to simulate the deep drawing process. The material modeling was implemented utilizing the ABAQUS/EXPLICIT program with plastic anisotropy. The optimization results showed that the deep drawing force and the wrinkling decrease when compared with experimental and numerical results from the literature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayane Kumagai ◽  
Yoshinobu Obata ◽  
Yoshiko Yabuki ◽  
Yinlai Jiang ◽  
Hiroshi Yokoi ◽  
...  

AbstractIn morphology field, the functions of an asymmetric-shaped distal phalanx in human finger have only been inferred. In this study, we used an engineering approach to empirically examine the effects of the shape of distal phalanx on the ability of precision grasping. Hence, we developed artificial fingertips consisting of four parts, namely bones, nails, skin, and subcutaneous tissue, that substitute the actual human fingertips. Furthermore, we proposed a method to evaluate the grasping ability of artificial fingers. When a cylindrical object was grasped by an artificial fingertip, a pull-out experiment was conducted. Thus, the asymmetric type was found to be superior in terms of drawing force, holding time, and work of friction than the symmetric type. Our results clearly demonstrate that the asymmetric shape, particularly the mirror-reversed shape of the distal phalanx, improves the ability of precision grasping and suggests that the human distal phalanx is shaped favorably for object grasping.


2021 ◽  
Vol 11 (9) ◽  
pp. 3922
Author(s):  
Joong-Ki Hwang

The effects of die radius in a streamlined die on design factors, such as the distribution of strain, stress, temperature, damage, and drawing force of a wire, were investigated during wire drawing for a better understanding of streamlined die and improvement in drawing quality of the wire. A numerical simulation was performed with the die radius of the streamlined die. The behavior of the design factors of the drawn wire fabricated by the streamlined die was different from that of the conventional die and was highly dependent on the die radius. The different behaviors of the design factors with the die radius can be explained by the frictional work and redundant work of the wire with die angle. The temperature rise and drawing force were high at a greater die radius because of the great frictional stress and heating effect stemming from the high contact length of the wire and die. Meanwhile, the higher redundant work at the surface area with decreasing die radius led to higher strain inhomogeneity, effective stress, damage value, temperature rise, and drawing force due to the abrupt change in the metal flow of the wire stemming from the high die angle. After the optimization of several design factors with die radius, it was concluded that the optimum IDR values ranged from 0.14 to 0.18, indicating that a streamlined die with a radius of 70 to 90 mm was the most suitable in the present process condition. In particular, the damage value of the wire was reduced in this range of die radii compared to the conventional die.


2021 ◽  
pp. 28-33
Author(s):  
V. A. Kharitonov ◽  
M. Yu. Usanov

Drawing in monolithic draw dies is the primary and often nonalternative pressure metal treatment (PMT) method used in the wire manufacture for various purposes both in our country and abroad. Its effectiveness largely depends on the wire diameter and properties. Thus, when drawing wire of large diameters (>8.0 mm) from high-carbon steels (high-tensile reinforcing wire, spring wire, etc.), the stability of the process and the probability of metal fraction decreases. The use of classic roller draw dies increases the strain uniformity along the wire cross-section, reduces the force and multiplicity of drawing. However, the «circle-shaped section-circle» roller gauge system used in this process leads to a more complicated process, and most importantly, to a significant increase in production costs. In this paper, a comparative analysis of the drawing efficiency of a round billet with a diameter of 16.00 mm from steel grade 80 into a wire with a diameter of 14.25 mm (strain degree 21%) in one step in the classic monolithic draw die and roller draw dies: three-roller draw die with a spatially closed round gauge and three-roller draw die of radial shear strain. The latter is comparable to the well-known radial-shear rolling. The difference is that the energy is introduced into the deformation zone by applying a front pulling force, and the idler rollers rotate around the wire with a special drive. The authors used finite element modeling in the Deform-3d software package. The deformed state in processes with linear tensile strain was estimated by the distribution of the accumulated strain degree in the billet cross-section, and in processes with torsion – by the change in the curvature of the line applied to the side surface of the billet. The power parameters were determined in Deform-3d in the coordinates: drawing force – time of billet movement. The stress state was determined by the hydrostatic stress on the wire axis and the Cockcroft-Latham fracture criterion. It is established that the wire strain in a monolithic draw die is characterized by a significant strain inhomogeneity across the cross-section, monotonous flow, high energy consumption, and the wire collapsibility, especially of the mid-layers. The use of draw dies with a spatially closed round gauge reduces the drawing force by about 40%, reduces the degree of strain inhomogeneity along the cross-section, and increases the degree of accumulated strain. The radial-shear strain drawing significantly increases the degree of accumulated strain and provides grain grinding, especially in the surface layers of the wire.


Author(s):  
Lucas Alexandre de Carvalho ◽  
Frederico Ozanan Neves ◽  
Alex Sandro Payão dos Santos

Author(s):  
Saeed Hajiahmadi ◽  
Majid Elyasi ◽  
Mohsen Shakeri

In this research, geometric parameters were given in dimensionless form by the Π- Buckingham dimensional analysis method in the dimensionless group for deep drawing of a round cup. To find the best group of dimensionless parameters and the fittest dimensionless relational model, three scales of the cup are evaluated numerically by a commercial finite element software and stepwise regression modeling. After analyzing all effective geometric parameters, a fittest relational model among dimensionless parameters is found. In addition, the results of the new dimensionless model were compared with the simulation process and experimental tests. From the results, it is inferred that the geometric qualities of a large scale can be predicted with a small scale by the proposed dimensionless model. Comparing the results of the dimensionless model with experimental tests shows that the proposed dimensionless model has fine precision in the determination of geometrical parameters and drawing force estimation. Moreover, to evaluate the accuracy of the proposed dimensionless model, the predicted value of the model has been compared by the experimental results. It is shown that the dimensionless ratios of geometrical parameters can significantly affect the estimation of the drawing force by the proposed dimensionless model, but based on similarity law, because of the constant value of these dimensionless parameters in different scales, they could not be used for dimensionless analysis separately. It is also inferred that because of the effect of contact area on the coefficient of friction, which is changed by scale changing, the only dimensionless parameter that can significantly change the drawing force is the coefficient of friction. Finally, it is shown that the dimensionless geometrical parameter and the coefficient friction should be combined for dimensionless analysis.


2020 ◽  
Vol 304 ◽  
pp. 121-125
Author(s):  
Martin Necpal ◽  
Mária Kapustová ◽  
Maroš Martinkovič

The most comprehensive steel tube portfolio is used to produce all kinds of modern energy production and the corresponding auxiliary unit such as boilers and heat exchangers. Multi-rifled seamless steel tubes are distinguished by maximum pressure, heat resistance, strength and durability. Production of multi-rifled seamless steel tubes by cold draw process using multi-rifled mandrel is quite a new technology. Shape and dimension of the drawing tool depend on drawing tube reduction degree, i. e. on the original diameter of the initial tube and final diameter of the tube. The technology of drawing tubes is influenced by process parameters, dimensions of tools and cold forming process conditions. Optimization of the whole forming process naturally involve the FEM analyses and simulation. One of the most important information of the cold drawing process is the load stroke of the tools. The contribution is concerned at the usability of FEM simulation on an evaluation of cold draw forming process condition and prediction of load stroke of the forming tools. DEFORM 2D/3D FEM software is used to compare the result of the drawing force and to determine the appropriate methodology to set FEM simulation of cold forming.


Sign in / Sign up

Export Citation Format

Share Document