Discriminating hydrocarbon generation potential of coaly source rocks and their contribution: a case study from the Upper Paleozoic of Bohai Bay Basin, China

Author(s):  
Jinjun Xu ◽  
Da Lou ◽  
Qiang Jin ◽  
Lixin Fu ◽  
Fuqi Cheng ◽  
...  
2019 ◽  
Vol 182 ◽  
pp. 103928 ◽  
Author(s):  
Ling Tang ◽  
Xiongqi Pang ◽  
Yan Song ◽  
Zhenxue Jiang ◽  
Shu Jiang ◽  
...  

2018 ◽  
Vol 36 (5) ◽  
pp. 1229-1244
Author(s):  
Xiao-Rong Qu ◽  
Yan-Ming Zhu ◽  
Wu Li ◽  
Xin Tang ◽  
Han Zhang

The Huanghua Depression is located in the north-centre of Bohai Bay Basin, which is a rift basin developed in the Mesozoic over the basement of the Huabei Platform, China. Permo-Carboniferous source rocks were formed in the Huanghua Depression, which has experienced multiple complicated tectonic alterations with inhomogeneous uplift, deformation, buried depth and magma effect. As a result, the hydrocarbon generation evolution of Permo-Carboniferous source rocks was characterized by discontinuity and grading. On the basis of a detailed study on tectonic-burial history, the paper worked on the burial history, heating history and hydrocarbon generation history of Permo-Carboniferous source rocks in the Huanghua Depression combined with apatite fission track testing and fluid inclusion analyses using the EASY% Ro numerical simulation. The results revealed that their maturity evolved in stages with multiple hydrocarbon generations. In this paper, we clarified the tectonic episode, the strength of hydrocarbon generation and the time–spatial distribution of hydrocarbon regeneration. Finally, an important conclusion was made that the hydrocarbon regeneration of Permo-Carboniferous source rocks occurred in the Late Cenozoic and the subordinate depressions were brought forward as advantage zones for the depth exploration of Permo-Carboniferous oil and gas in the middle-northern part of the Huanghua Depression, Bohai Bay Basin, China.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haiping Huang ◽  
Hong Zhang ◽  
Zheng Li ◽  
Mei Liu

To the accurate reconstruction of the hydrocarbon generation history in the Dongying Depression, Bohai Bay Basin, East China, core samples of the Eocene Shahejie Formation from 3 shale oil boreholes were analyzed using organic petrology and organic geochemistry methods. The shales are enriched in organic matter with good to excellent hydrocarbon generation potential. The maturity indicated by measured vitrinite reflectance (%Ro) falls in the range of 0.5–0.9% and increases with burial depth in each well. Changes in biomarker and aromatic hydrocarbon isomer distributions and biomarker concentrations are also unequivocally correlated with the thermal maturity of the source rocks. Maturity/depth relationships for hopanes, steranes, and aromatic hydrocarbons, constructed from core data indicate different well locations, have different thermal regimes. A systematic variability of maturity with geographical position along the depression has been illustrated, which is a dependence on the distance to the Tanlu Fault. Higher thermal gradient at the southern side of the Dongying Depression results in the same maturity level at shallower depth compared to the northern side. The significant regional thermal regime change from south to north in the Dongying Depression may exert an important impact on the timing of hydrocarbon maturation and expulsion at different locations. Different exploration strategies should be employed accordingly.


2018 ◽  
Vol 6 (4) ◽  
pp. SN11-SN21
Author(s):  
Zhenkai Huang ◽  
Maowen Li ◽  
Quanyou Liu ◽  
Xiaomin Xie ◽  
Peng Liu ◽  
...  

Systematic organic petrology and geochemistry analyses have been conducted in the source rocks of the lower Es3 and upper Es4 members of the Shahejie Formation in the Niuzhuang Sub-sag, Jiyang Depression, Bohai Bay Basin, eastern China. The results indicate that the main organic types of shale and nongypsum mudstone in the lower Es3 and upper Es4 member are I-II1 kerogen, and the predominant ([Formula: see text]) activation energy frequencies range from 57 to [Formula: see text]. The similar distribution characteristics in the two source rocks indicate that they have a similar hydrocarbon maturation process. An extensive pyrolysis analysis indicates that the source rocks of the upper Es4 member do not have an obvious double peak hydrocarbon generation model. Previous studies indicate that the hydrocarbon index peak at a depth of 2500–2700 m is affected by migrating hydrocarbon. Major differences are not observed in the hydrocarbon generation and evolution process of the shale and nongypsum mudstone. The primary oil generation threshold of the lower Es3 and upper Es4 members is approximately 3200 m, and the oil generation peak is approximately 3500 m. The activation energy distribution of the gypsum mudstone of the upper Es4 member is wider than that of the shale and nongypsum mudstone, and lower activation energies account for a larger proportion of the activation energies. The above factors may lead to a shallower oil generation threshold for gypsum mudstone compared with that for shale and nongypsum mudstone.


2019 ◽  
Vol 38 (2) ◽  
pp. 417-433
Author(s):  
Bo Pang ◽  
Junqing Chen ◽  
Xiongqi Pang ◽  
Tuo Liu ◽  
Haijun Yang ◽  
...  

Sediments with organic matter content (total organic carbon) TOC ≤ 0.5% which can act as effective source rocks are critical and challenging in the field of petroleum geology. A new method is proposed through a case study to identify and evaluate the effective source rocks, which is applied to study the changing characteristic of hydrocarbon-generation potential index with depth. The burial depth corresponding to the beginning of hydrocarbon-generation potential index reduction represents the hydrocarbon expulsion threshold in source rocks. Then, new identification standards are established for discrimination of effective source rocks of Middle–Upper Ordovician in Tarim Basin. The critical value of TOC for effective source rocks change with their burial depth: the TOC > 0.5% with source rock depth > 4000 m, TOC > 0.4% with depth >4500 m, TOC > 0.3% with depth > 5000 m, TOC > 0.2% with depth >5500 m. Based on the new criteria, effective source rocks in the Middle–Upper Ordovician are identified and their total potential hydrocarbon resources is evaluated, reaches 0.68 × 109 t in the Tazhong area, which is 65.4% higher than that of previous studies and consistent with the exploration result. Thus, this new method is of significance to resource evaluation and can be applied in the carbonate source rocks and mudstone source rocks with high degree of exploration.


Sign in / Sign up

Export Citation Format

Share Document