Real-time localization estimator of mobile node in wireless sensor networks based on extended Kalman filter

2011 ◽  
Vol 15 (2) ◽  
pp. 128-131
Author(s):  
Jin-peng Tian ◽  
Guo-xin Zheng
Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3638 ◽  
Author(s):  
Yan Wang ◽  
Huihui Jie ◽  
Long Cheng

As one of the most essential technologies, wireless sensor networks (WSNs) integrate sensor technology, embedded computing technology, and modern network and communication technology, which have become research hotspots in recent years. The localization technique, one of the key techniques for WSN research, determines the application prospects of WSNs to a great extent. The positioning errors of wireless sensor networks are mainly caused by the non-line of sight (NLOS) propagation, occurring in complicated channel environments such as the indoor conditions. Traditional techniques such as the extended Kalman filter (EKF) perform unsatisfactorily in the case of NLOS. In contrast, the robust extended Kalman filter (REKF) acquires accurate position estimates by applying the robust techniques to the EKF in NLOS environments while losing efficiency in LOS. Therefore it is very hard to achieve high performance with a single filter in both LOS and NLOS environments. In this paper, a localization method using a robust extended Kalman filter and track-quality-based (REKF-TQ) fusion algorithm is proposed to mitigate the effect of NLOS errors. Firstly, the EKF and REKF are used in parallel to obtain the location estimates of mobile nodes. After that, we regard the position estimates as observation vectors, which can be implemented to calculate the residuals in the Kalman filter (KF) process. Then two KFs with a new observation vector and equation are used to further filter the estimates, respectively. At last, the acquired position estimates are combined by the fusion algorithm based on the track quality to get the final position vector of mobile node, which will serve as the state vector of both KFs at the next time step. Simulation results illustrate that the TQ-REKF algorithm yields better positioning accuracy than the EKF and REKF in the NLOS environment. Moreover, the proposed algorithm achieves higher accuracy than interacting multiple model algorithm (IMM) with EKF and REKF.


Author(s):  
K. Vadivukkarasi ◽  
R. Kumar

Target tracking is essential for localization and many other applications in Wireless Sensor Networks (WSNs). Kalman filter is used to reduce measurement noise in target tracking. In this research TelosB motes are used to measure Received Signal Strength Indication (RSSI). RSSI measurement doesn’t require any external hardware compare to other distance estimation methods such as Time of Arrival (TOA), Time Difference of Arrival (TDoA) and Angle of Arrival (AoA). Distances between beacon and non-anchor nodes are estimated using the measured RSSI values. Position of the non-anchor node is estimated after finding the distance between beacon and non-anchor nodes. A new algorithm is proposed with Kalman filter for location estimation and target tracking in order to improve localization accuracy called as MoteTrack InOut system. This system is implemented in real time for indoor and outdoor tracking. Localization error reduction obtained in an outdoor environment is 75%.


Sign in / Sign up

Export Citation Format

Share Document