Estimation of mean squared error of model-based small area estimators

Test ◽  
2010 ◽  
Vol 20 (2) ◽  
pp. 367-388 ◽  
Author(s):  
Gauri Sankar Datta ◽  
Tatsuya Kubokawa ◽  
Isabel Molina ◽  
J. N. K. Rao
2008 ◽  
Vol 78 (5) ◽  
pp. 443-462 ◽  
Author(s):  
W. González-Manteiga ◽  
M. J. Lombardía ◽  
I. Molina ◽  
D. Morales ◽  
L. Santamaría

2010 ◽  
Vol 38 (4) ◽  
pp. 598-608 ◽  
Author(s):  
Mahmoud Torabi ◽  
Jon N. K. Rao

2013 ◽  
Vol 2 (3) ◽  
pp. 35 ◽  
Author(s):  
PUTU EKA ARIWIJAYANTHI ◽  
I WAYAN SUMARJAYA ◽  
TJOKORDA BAGUS OKA

Small area is an area with insufficient sample for direct estimation. Limited survey objects, cause direct estimation can not produce better parameter estimates. Based on this, an indirect estimation method called empirical Bayes is used to obtain a better estimate. This study will compare means squared error by  direct estimation method and empirical Bayes method to find a better method on a small area. Jackknife is used to get the means squared error in the empirical Bayes. The results is, empirical Bayes methods give a better parameters based on mean squared errors. Empirical Bayes can produce a smaller mean squared error more than direct estimation in small area.


2007 ◽  
Vol 51 (5) ◽  
pp. 2720-2733 ◽  
Author(s):  
W. González-Manteiga ◽  
M.J. Lombardía ◽  
I. Molina ◽  
D. Morales ◽  
L. Santamaría

Sign in / Sign up

Export Citation Format

Share Document