Finite element analysis of road structure containing top-down crack within asphalt concrete layer

2020 ◽  
Vol 27 (1) ◽  
pp. 242-255 ◽  
Author(s):  
Sadjad Pirmohammad ◽  
Yousef Majd-Shokorlou
Author(s):  
Volodymyr Maliar

The main destructions of asphalt concrete pavement are rut, transverse cracking, fatigue failures, peeling, etc. When the pavement cools, lowtemperature damages can occur for various reasons. The sources of damages that cause such failures are not well studied, so this problem is relevant. Goal. The aim of this work was to determine the stress-strain state inside the volume of asphalt con-crete during cooling on the basis of a two composite three-dimensional model using the method of computer simulation in response to the changing structured bitumen properties. Methodology. The method of finite element analysis of the stress-strain state of the composite material was used. The material is represented by a three-dimensional (3D) model pro-posed by prof. B.S. Radovsky. Results. The finite element analysis method was used to calculate the average thermal stresses in asphalt concrete during cooling in accordance with increase of viscosity of bitumen section, which is located in asphalt concrete in a structured state. This consideration is realized on the basis of changes in a number of bitumen properties in the contact zone, in particular, the changes in the glass transition temperature. It is shown that the thermal stresses that occur during cooling by limiting the movement of asphalt concrete in the construction reach the strength values at negative temperatures, which can be used to estimate the temperature of crack formation in asphalt concrete under the condi-tion of its action in pavement (Tcr). The values of these stresses depend on the cooling rate, the bitumen content, its viscosity and structure. Originality. For the first time, it was found numerically that in the sample of asphalt concrete, which is free from restriction of movements, there are internal thermal stresses during cooling due to the difference of bitumen thermal expansion coefficients and stone materials. These stresses are up to 87 percent of the average thermal stresses that occur in the compressed sample. Practical value. The possibility of rapid estimation of thermal stresses with the possibility of predicting low-temperature cracks in asphalt concrete is shown.


Sign in / Sign up

Export Citation Format

Share Document