A strong convergence theorem for approximation of a zero of the sum of two maximal monotone mappings in Banach spaces

Author(s):  
Getahun B. Wega ◽  
Habtu Zegeye
Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1525-1536 ◽  
Author(s):  
Habtu Zegeye

In this paper, we study a strong convergence theorem for a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. As a consequence, we prove convergence theorem for a common fixed point of a finite family of Bergman relatively nonexpansive mappings. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common zero of a finite family of Bregman inverse strongly monotone mappings and a solution of a finite family of variational inequality problems.


2020 ◽  
Vol 53 (1) ◽  
pp. 152-166 ◽  
Author(s):  
Getahun B. Wega ◽  
Habtu Zegeye ◽  
Oganeditse A. Boikanyo

AbstractThe purpose of this article is to study the method of approximation for zeros of the sum of a finite family of maximally monotone mappings and prove strong convergence of the proposed approximation method under suitable conditions. The method of proof is of independent interest. In addition, we give some applications to the minimization problems and provide a numerical example which supports our main result. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.


2020 ◽  
Vol 29 (1) ◽  
pp. 27-36
Author(s):  
M. M. GUEYE ◽  
M. SENE ◽  
M. NDIAYE ◽  
N. DJITTE

Let E be a real normed linear space and E∗ its dual. In a recent work, Chidume et al. [Chidume, C. E. and Idu, K. O., Approximation of zeros of bounded maximal monotone mappings, solutions of hammerstein integral equations and convex minimizations problems, Fixed Point Theory and Applications, 97 (2016)] introduced the new concepts of J-fixed points and J-pseudocontractive mappings and they shown that a mapping A : E → 2 E∗ is monotone if and only if the map T := (J −A) : E → 2 E∗ is J-pseudocontractive, where J is the normalized duality mapping of E. It is our purpose in this work to introduce an algorithm for approximating J-fixed points of J-pseudocontractive mappings. Our results are applied to approximate zeros of monotone mappings in certain Banach spaces. The results obtained here, extend and unify some recent results in this direction for the class of maximal monotone mappings in uniformly smooth and strictly convex real Banach spaces. Our proof is of independent interest.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Mei Yuan ◽  
Xi Li ◽  
Xue-song Li ◽  
John J. Liu

Relatively nonexpansive mappings and equilibrium problems are considered based on a shrinking projection method. Using properties of the generalizedf-projection operator, a strong convergence theorem for relatively nonexpansive mappings and equilibrium problems is proved in Banach spaces under some suitable conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Ali Alghamdi ◽  
Naseer Shahzad ◽  
Habtu Zegeye

We study a strong convergence for a common fixed point of a finite family of quasi-Bregman nonexpansive mappings in the framework of real reflexive Banach spaces. As a consequence, convergence for a common fixed point of a finite family of Bergman relatively nonexpansive mappings is discussed. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common solution of a finite family equilibrium problem and a common zero of a finite family of maximal monotone mappings. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.


2011 ◽  
Vol 2011 ◽  
pp. 1-19
Author(s):  
Yekini Shehu

We construct a new Halpern type iterative scheme by hybrid methods and prove strong convergence theorem for approximation of a common fixed point of two countable families of weak relatively nonexpansive mappings in a uniformly convex and uniformly smooth real Banach space using the properties of generalizedf-projection operator. Using this result, we discuss strong convergence theorem concerning generalH-monotone mappings. Our results extend many known recent results in the literature.


Sign in / Sign up

Export Citation Format

Share Document