scholarly journals A strong convergence theorem for a zero of the sum of a finite family of maximally monotone mappings

2020 ◽  
Vol 53 (1) ◽  
pp. 152-166 ◽  
Author(s):  
Getahun B. Wega ◽  
Habtu Zegeye ◽  
Oganeditse A. Boikanyo

AbstractThe purpose of this article is to study the method of approximation for zeros of the sum of a finite family of maximally monotone mappings and prove strong convergence of the proposed approximation method under suitable conditions. The method of proof is of independent interest. In addition, we give some applications to the minimization problems and provide a numerical example which supports our main result. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.

Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1525-1536 ◽  
Author(s):  
Habtu Zegeye

In this paper, we study a strong convergence theorem for a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. As a consequence, we prove convergence theorem for a common fixed point of a finite family of Bergman relatively nonexpansive mappings. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common zero of a finite family of Bregman inverse strongly monotone mappings and a solution of a finite family of variational inequality problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
H. Zegeye ◽  
N. Shahzad

We prove a strong convergence theorem for a common fixed point of a finite family of right Bregman strongly nonexpansive mappings in the framework of real reflexive Banach spaces. Furthermore, we apply our method to approximate a common zero of a finite family of maximal monotone mappings and a solution of a finite family of convex feasibility problems in reflexive real Banach spaces. Our theorems complement some recent results that have been proved for this important class of nonlinear mappings.


2011 ◽  
Vol 2011 ◽  
pp. 1-19
Author(s):  
Yekini Shehu

We construct a new Halpern type iterative scheme by hybrid methods and prove strong convergence theorem for approximation of a common fixed point of two countable families of weak relatively nonexpansive mappings in a uniformly convex and uniformly smooth real Banach space using the properties of generalizedf-projection operator. Using this result, we discuss strong convergence theorem concerning generalH-monotone mappings. Our results extend many known recent results in the literature.


Author(s):  
Suhel Ahmad Khan ◽  
Kaleem Raza Kazmi ◽  
Watcharaporn Cholamjiak ◽  
Hemen Dutta

We prove a strong convergence theorem for finding a common solution of a combination of equilibrium problems and the set of fixed points of a k-nonspreading multi-valued mapping by using shrinking projection hybrid method. Further, we give a numerical example to justify our main result and compare the shrinking areas of solution set after randomization.


2018 ◽  
Vol 51 (1) ◽  
pp. 277-294 ◽  
Author(s):  
Kazeem O. Aremu ◽  
Chinedu Izuchukwu ◽  
Godwin C. Ugwunnadi ◽  
Oluwatosin T. Mewomo

Abstract In this paper, we introduce and study the class of demimetric mappings in CAT(0) spaces.We then propose a modified proximal point algorithm for approximating a common solution of a finite family of minimization problems and fixed point problems in CAT(0) spaces. Furthermore,we establish strong convergence of the proposed algorithm to a common solution of a finite family of minimization problems and fixed point problems for a finite family of demimetric mappings in complete CAT(0) spaces. A numerical example which illustrates the applicability of our proposed algorithm is also given. Our results improve and extend some recent results in the literature.


Sign in / Sign up

Export Citation Format

Share Document