Effects of a saponin-based insect resistance and a systemic pathogen resistance on field performance of the wild crucifer Barbarea vulgaris

Author(s):  
Thure P. Hauser ◽  
Stina Christensen ◽  
Vera Kuzina ◽  
Marco Thines ◽  
Sebastian Ploch ◽  
...  
2020 ◽  
Author(s):  
Erik Alexandersson ◽  
Sandeep Kushwaha ◽  
Aastha Subedi ◽  
Deborah Weighill ◽  
Sharlee Climer ◽  
...  

Abstract Background Potato is the third most consumed crop in the world. Breeding for traits such as yield, product quality and pathogen resistance are main priorities. Identifying molecular signatures of these and other important traits is important in future breeding efforts. In this study, a progeny population from a cross between a breeding line, SW93-1015, and a cultivar, Désirée, was studied by trait analysis and RNA-seq in order to develop understanding of segregating traits at the molecular level and identify transcripts with expressional correlation to these traits. Transcript markers with predictive value for field performance applicable under controlled environments would be of great value for plant breeding. Results A total of 34 progeny lines from SW93-1015 and Désirée were phenotyped for 17 different traits in a field in Nordic climate conditions and controlled climate settings. A master transcriptome was constructed with all 34 progeny lines and the parents through a de novo assembly of RNA-seq reads. Gene expression data obtained in a controlled environment from the 34 lines was correlated to traits by different similarity indices, including Pearson and Spearman, as well as DUO, which calculates the co-occurrence between high and low values for gene expression and trait. Our study linked transcripts to traits such as yield, growth rate, high laying tubers, late and tuber blight, tuber greening and early flowering. We found several transcripts associated to late blight resistance and transcripts encoding receptors were associated to Dickeya solani susceptibility. Transcript levels of a UBX-domain protein was negatively associated to yield and a GLABRA2 expression modulator was negatively associated to growth rate. Conclusion In our study, we identify 100’s of transcripts, putatively linked based on expression with 17 traits of potato, representing both well-known and novel associations. This approach can be used to link the transcriptome to traits. We explore the possibility of associating the level of transcript expression from controlled, optimal environments to traits in a progeny population with different methods introducing the application of DUO for the first time on transcriptome data. We verify the expression pattern for five of the putative transcript markers in another progeny population.


2019 ◽  
Author(s):  
Erik Alexandersson ◽  
Sandeep Kushwaha ◽  
Aastha Subedi ◽  
Deborah Weighill ◽  
Sharlee Climer ◽  
...  

Abstract Background Potato is the third most consumed crop in the world. Breeding for traits such as yield, product quality and pathogen resistance are main priorities. Identifying molecular signatures of these and other important traits is important in future breeding efforts. In this study, a progeny population from a cross between a breeding line, SW93-1015, and a cultivar, Désirée, was studied by trait analysis and RNA-seq in order to develop understanding of segregating traits at the molecular level and identify transcripts with expressional correlation to these traits. Transcript markers with predictive value for field performance applicable under controlled environments would be of great value for plant breeding. Results A total of 34 progeny lines from SW93-1015 and Désirée were phenotyped for 17 different traits in a field in Nordic climate conditions and controlled climate settings. A master transcriptome was constructed with all 34 progeny lines and the parents through a de novo assembly of RNA-seq reads. Gene expression data obtained in a controlled environment from the 34 lines was correlated to traits by different similarity indices, including Pearson and Spearman, as well as DUO, which calculates the co-occurrence between high and low values for gene expression and trait. Our study linked transcripts to traits such as yield, growth rate, high laying tubers, late and tuber blight, tuber greening and early flowering. We found several transcripts associated to late blight resistance and transcripts encoding receptors were associated to Dickeya solani susceptibility. Transcript levels of a UBX-domain protein was negatively associated to yield and a GLABRA2 expression modulator was negatively associated to growth rate. Conclusion In our study, we identify 100’s of transcripts, putatively linked based on expression with 17 traits of potato, representing both well-known and novel associations. This approach can be used to link the transcriptome to traits. We explore the possibility of associating the level of transcript expression from controlled, optimal environments to traits in a progeny population with different methods introducing the application of DUO for the first time on transcriptome data. We verify the expression pattern for five of the putative transcript markers in another progeny population.


2019 ◽  
Author(s):  
Erik Alexandersson ◽  
Sandeep Kushwaha ◽  
Aastha Subedi ◽  
Deborah Weighill ◽  
Sharlee Climer ◽  
...  

Abstract Background Potato is the third most consumed crop in the world. Breeding for traits such as yield, product quality and pathogen resistance are main priorities. Identifying molecular signatures of these and other important traits is important in future breeding efforts. In this study, a progeny population from a cross between a breeding line, SW93-1015, and a cultivar, Désirée, was studied by trait analysis and RNA-seq in order to develop understanding of segregating traits at the molecular level and identify transcripts with expressional correlation to these traits. Transcript markers with predictive value for field performance applicable under controlled environments would be of great value for plant breeding. Results A total of 34 progeny lines from SW93-1015 and Désirée were phenotyped for 17 different traits in a field in Nordic climate conditions and controlled climate settings. A master transcriptome was constructed with all 34 progeny lines and the parents through a de novo assembly of RNA-seq reads. Gene expression data obtained in a controlled environment from the 34 lines was correlated to traits by different similarity indices, including Pearson and Spearman, as well as DUO, which calculates the co-occurrence between high and low values for gene expression and trait. Our study linked transcripts to traits such as yield, growth rate, high laying tubers, late and tuber blight, tuber greening and early flowering. We found several transcripts associated to late blight resistance and transcripts encoding receptors were associated to Dickeya solani susceptibility. Transcript levels of a UBX-domain protein was negatively associated to yield and a GLABRA2 expression modulator was negatively associated to growth rate. Conclusion In our study, we identify 100’s of transcripts, putatively linked based on expression with 17 traits of potato, representing both well-known and novel associations. This approach can be used to link the transcriptome to traits. We explore the possibility of associating the level of transcript expression from controlled, optimal environments to traits in a progeny population with different methods introducing the application of DUO for the first time on transcriptome data. We verify the expression pattern for five of the putative transcript markers in another progeny population.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Erik Alexandersson ◽  
Sandeep Kushwaha ◽  
Aastha Subedi ◽  
Deborah Weighill ◽  
Sharlee Climer ◽  
...  

Abstract Background Potato is the third most consumed crop in the world. Breeding for traits such as yield, product quality and pathogen resistance are main priorities. Identifying molecular signatures of these and other important traits is important in future breeding efforts. In this study, a progeny population from a cross between a breeding line, SW93–1015, and a cultivar, Désirée, was studied by trait analysis and RNA-seq in order to develop understanding of segregating traits at the molecular level and identify transcripts with expressional correlation to these traits. Transcript markers with predictive value for field performance applicable under controlled environments would be of great value for plant breeding. Results A total of 34 progeny lines from SW93–1015 and Désirée were phenotyped for 17 different traits in a field in Nordic climate conditions and controlled climate settings. A master transcriptome was constructed with all 34 progeny lines and the parents through a de novo assembly of RNA-seq reads. Gene expression data obtained in a controlled environment from the 34 lines was correlated to traits by different similarity indices, including Pearson and Spearman, as well as DUO, which calculates the co-occurrence between high and low values for gene expression and trait. Our study linked transcripts to traits such as yield, growth rate, high laying tubers, late and tuber blight, tuber greening and early flowering. We found several transcripts associated to late blight resistance and transcripts encoding receptors were associated to Dickeya solani susceptibility. Transcript levels of a UBX-domain protein was negatively associated to yield and a GLABRA2 expression modulator was negatively associated to growth rate. Conclusion In our study, we identify 100’s of transcripts, putatively linked based on expression with 17 traits of potato, representing both well-known and novel associations. This approach can be used to link the transcriptome to traits. We explore the possibility of associating the level of transcript expression from controlled, optimal environments to traits in a progeny population with different methods introducing the application of DUO for the first time on transcriptome data. We verify the expression pattern for five of the putative transcript markers in another progeny population.


1999 ◽  
Vol 7 ◽  
pp. 113-122
Author(s):  
A.J. Popay ◽  
D.E. Hume ◽  
J.G. Baltus ◽  
G.C.M. Latch ◽  
B.A. Tapper ◽  
...  

A national series of six small plot trials were sown in 1996 and four in 1997 to evaluate the performance of six novel fungal endophytes in Grasslands Nui perennial ryegrass. These endophytes do not produce the mammalian toxins, ergovaline and lolitrem B, but produce peramine, a feeding deterrent to the major ryegrass pest, Argentine stem weevil (ASW). Trials included the naturally occurring endophyte (wild-type) which produces both toxins, and an endophyte-free (nil) treatment. Pasture production was measured regularly and samples were taken at least once each summer-autumn from all trials for assessment of ASW damage. Black beetle larval damage was recorded on three trials. The toxin-free endophytes, AR1, AR12, AR22 and the wild-type were equally effective at reducing ASW adult feeding and larval damage significantly below that which occurred in nil treatments. Ryegrass infected with AR1, AR12, AR22 and the wild-type endophyte was damaged less by black beetle larvae than ryegrass without endophyte. The effect of AR24 on insect damage was variable and two other toxin-free endophytes, AR17 and AR506, which had low infection rates, seldom reduced either ASW or black beetle damage. Yield differences between treatments were found on two of 21 sampling occasions between October and December and 12 of 30 sampling occasions between January and April. During summer-autumn, wild-type, AR1, AR12 and AR22 gave higher ryegrass yields than the nil, AR17 and AR506 treatments. In the second year of the 1996-sown trials, productivity of ryegrass with AR1 in the summer-autumn tended to be lower than that of the wild-type with significant differences occasionally occurring. Yield differences were correlated with either ASW or black beetle damage in North Island trials and with percent endophyte infection at all sites. Differences in yield at Lincoln, Canterbury, were attributed to pasture mealy bug. Three conclusions were drawn from these results: 1. Endophytes are very important for maximising ryegrass yield during summer and early autumn. 2. The effect of endophytes on yield is at least partly due to the insect resistance they impart. 3. The field performance of three toxin-free endophytes, AR1, AR12 and AR22, equalled that of the wild-type in terms of increased insect resistance but did not always match it in plant growth. Keywords: AR1, Argentine stem weevil, black beetle, endophyte strain, ergovaline, insect damage, lolitrem B, Neotyphodium lolii, ryegrass yield


2012 ◽  
Vol 160 (4) ◽  
pp. 1881-1895 ◽  
Author(s):  
Jörg M. Augustin ◽  
Sylvia Drok ◽  
Tetsuro Shinoda ◽  
Kazutsuka Sanmiya ◽  
Jens Kvist Nielsen ◽  
...  

2021 ◽  
Author(s):  
Selma Cadot ◽  
Valentin Gfeller ◽  
Lingfei Hu ◽  
Nikhil Singh ◽  
Andrea Sánchez-Vallet ◽  
...  

AbstractPlant-soil feedbacks refer to effects on plants that are mediated by soil modifications caused by the previous plant generation. Maize conditions the surrounding soil by secretion of root exudates including benzoxazinoids (BXs), a class of bioactive secondary metabolites. Previous work found that a BX- conditioned soil microbiota enhances insect resistance while reducing biomass in the next generation of maize plants. Whether these BX-mediated and microbially driven feedbacks are conserved across different soils and response species is unknown. We found the BX-feedbacks on maize growth and insect resistance conserved between two arable soils, but absent in a more fertile grassland soil, suggesting a soil-type dependence of BX feedbacks. We demonstrated that wheat also responded to BX-feedbacks. While the negative growth response to BX-conditioning was conserved in both cereals, insect resistance showed opposite patterns, with an increase in maize and a decrease in wheat. Wheat pathogen resistance was not affected. Finally and consistent with maize, we found the BX-feedbacks to be cultivar specific. Taken together, BX- feedbacks affected cereal growth and resistance in a soil and genotype dependent manner. Cultivar-specificity of BX-feedbacks is a key finding, as it hides the potential to optimize crops that avoid negative plant-soil feedbacks in rotations.


Sign in / Sign up

Export Citation Format

Share Document