scholarly journals Moduli of regularity and rates of convergence for Fejér monotone sequences

2019 ◽  
Vol 232 (1) ◽  
pp. 261-297 ◽  
Author(s):  
Ulrich Kohlenbach ◽  
Genaro López-Acedo ◽  
Adriana Nicolae
Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5105-5109
Author(s):  
Hüseyin Bor

In this paper, we generalize a known theorem under more weaker conditions dealing with the generalized absolute Ces?ro summability factors of infinite series by using quasi monotone sequences and quasi power increasing sequences. This theorem also includes some new results.


Author(s):  
Felix Herold ◽  
Daniel Hug ◽  
Christoph Thäle

AbstractPoisson processes in the space of $$(d-1)$$ ( d - 1 ) -dimensional totally geodesic subspaces (hyperplanes) in a d-dimensional hyperbolic space of constant curvature $$-1$$ - 1 are studied. The k-dimensional Hausdorff measure of their k-skeleton is considered. Explicit formulas for first- and second-order quantities restricted to bounded observation windows are obtained. The central limit problem for the k-dimensional Hausdorff measure of the k-skeleton is approached in two different set-ups: (i) for a fixed window and growing intensities, and (ii) for fixed intensity and growing spherical windows. While in case (i) the central limit theorem is valid for all $$d\ge 2$$ d ≥ 2 , it is shown that in case (ii) the central limit theorem holds for $$d\in \{2,3\}$$ d ∈ { 2 , 3 } and fails if $$d\ge 4$$ d ≥ 4 and $$k=d-1$$ k = d - 1 or if $$d\ge 7$$ d ≥ 7 and for general k. Also rates of convergence are studied and multivariate central limit theorems are obtained. Moreover, the situation in which the intensity and the spherical window are growing simultaneously is discussed. In the background are the Malliavin–Stein method for normal approximation and the combinatorial moment structure of Poisson U-statistics as well as tools from hyperbolic integral geometry.


2019 ◽  
Vol 17 (06) ◽  
pp. 947-975 ◽  
Author(s):  
Lei Shi

We investigate the distributed learning with coefficient-based regularization scheme under the framework of kernel regression methods. Compared with the classical kernel ridge regression (KRR), the algorithm under consideration does not require the kernel function to be positive semi-definite and hence provides a simple paradigm for designing indefinite kernel methods. The distributed learning approach partitions a massive data set into several disjoint data subsets, and then produces a global estimator by taking an average of the local estimator on each data subset. Easy exercisable partitions and performing algorithm on each subset in parallel lead to a substantial reduction in computation time versus the standard approach of performing the original algorithm on the entire samples. We establish the first mini-max optimal rates of convergence for distributed coefficient-based regularization scheme with indefinite kernels. We thus demonstrate that compared with distributed KRR, the concerned algorithm is more flexible and effective in regression problem for large-scale data sets.


Author(s):  
Moritz Moeller ◽  
Tino Ullrich

AbstractIn this paper we study $$L_2$$ L 2 -norm sampling discretization and sampling recovery of complex-valued functions in RKHS on $$D \subset \mathbb {R}^d$$ D ⊂ R d based on random function samples. We only assume the finite trace of the kernel (Hilbert–Schmidt embedding into $$L_2$$ L 2 ) and provide several concrete estimates with precise constants for the corresponding worst-case errors. In general, our analysis does not need any additional assumptions and also includes the case of non-Mercer kernels and also non-separable RKHS. The fail probability is controlled and decays polynomially in n, the number of samples. Under the mild additional assumption of separability we observe improved rates of convergence related to the decay of the singular values. Our main tool is a spectral norm concentration inequality for infinite complex random matrices with independent rows complementing earlier results by Rudelson, Mendelson, Pajor, Oliveira and Rauhut.


Author(s):  
Sergio Caucao ◽  
Ivan Yotov

Abstract We propose and analyse a mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Our approach is based on the introduction of a pseudostress tensor related to the velocity gradient and pressure, leading to a mixed formulation where the pseudostress tensor and the velocity are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation in a Banach space setting, employing classical results on nonlinear monotone operators and a regularization technique. We then present well posedness and error analysis for semidiscrete continuous-in-time and fully discrete finite element approximations on simplicial grids with spatial discretization based on the Raviart–Thomas spaces of degree $k$ for the pseudostress tensor and discontinuous piecewise polynomial elements of degree $k$ for the velocity and backward Euler time discretization. We provide several numerical results to confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method for a range of model parameters.


1984 ◽  
Vol 16 (3) ◽  
pp. 492-561 ◽  
Author(s):  
E. J. Hannan ◽  
L. Kavalieris

This paper is in three parts. The first deals with the algebraic and topological structure of spaces of rational transfer function linear systems—ARMAX systems, as they have been called. This structure theory is dominated by the concept of a space of systems of order, or McMillan degree, n, because of the fact that this space, M(n), can be realised as a kind of high-dimensional algebraic surface of dimension n(2s + m) where s and m are the numbers of outputs and inputs. In principle, therefore, the fitting of a rational transfer model to data can be considered as the problem of determining n and then the appropriate element of M(n). However, the fact that M(n) appears to need a large number of coordinate neighbourhoods to cover it complicates the task. The problems associated with this program, as well as theory necessary for the analysis of algorithms to carry out aspects of the program, are also discussed in this first part of the paper, Sections 1 and 2.The second part, Sections 3 and 4, deals with algorithms to carry out the fitting of a model and exhibits these algorithms through simulations and the analysis of real data.The third part of the paper discusses the asymptotic properties of the algorithm. These properties depend on uniform rates of convergence being established for covariances up to some lag increasing indefinitely with the length of record, T. The necessary limit theorems and the analysis of the algorithms are given in Section 5. Many of these results are of interest independent of the algorithms being studied.


Sign in / Sign up

Export Citation Format

Share Document