scholarly journals Pseudo-fractional differential equations and generalized g-Laplace transform

Author(s):  
J. Vanterler da C. Sousa ◽  
Rubens F. Camargo ◽  
E. Capelas de Oliveira ◽  
Gastáo S. F. Frederico
2019 ◽  
Vol 38 (6) ◽  
pp. 159-171 ◽  
Author(s):  
Vahid Mohammadnezhad ◽  
Mostafa Eslami ◽  
Hadi Rezazadeh

In this paper, we first study stability analysis of linear conformable fractional differential equations system with time delays. Some sufficient conditions on the asymptotic stability for these systems are proposed by using properties of the fractional Laplace transform and fractional version of final value theorem. Then, we employ conformable Euler’s method to solve conformable fractional differential equations system with time delays to illustrate the effectiveness of our theoretical results


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668335
Author(s):  
Adem Kılıçman ◽  
Wasan Ajeel Ahmood

The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.


Axioms ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 55 ◽  
Author(s):  
Fernando Silva ◽  
Davidson Moreira ◽  
Marcelo Moret

In this paper, we use the conformable fractional derivative to discuss some fractional linear differential equations with constant coefficients. By applying some similar arguments to the theory of ordinary differential equations, we establish a sufficient condition to guarantee the reliability of solving constant coefficient fractional differential equations by the conformable Laplace transform method. Finally, the analytical solution for a class of fractional models associated with the logistic model, the von Foerster model and the Bertalanffy model is presented graphically for various fractional orders. The solution of the corresponding classical model is recovered as a particular case.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
T. Allahviranloo ◽  
S. Abbasbandy ◽  
M. R. Balooch Shahryari ◽  
S. Salahshour ◽  
D. Baleanu

The solutions of linear fuzzy fractional differential equations (FFDEs) under the Caputo differentiability have been investigated. To this end, the fuzzy Laplace transform was used to obtain the solutions of FFDEs. Then, some new results regarding the relation between some types of differentiability have been obtained. Finally, some applicable examples are solved in order to show the ability of the proposed method.


2021 ◽  
Vol 5 (2) ◽  
pp. 43
Author(s):  
Gerd Baumann

We shall discuss three methods of inverse Laplace transforms. A Sinc-Thiele approximation, a pure Sinc, and a Sinc-Gaussian based method. The two last Sinc related methods are exact methods of inverse Laplace transforms which allow us a numerical approximation using Sinc methods. The inverse Laplace transform converges exponentially and does not use Bromwich contours for computations. We apply the three methods to Mittag-Leffler functions incorporating one, two, and three parameters. The three parameter Mittag-Leffler function represents Prabhakar’s function. The exact Sinc methods are used to solve fractional differential equations of constant and variable differentiation order.


Sign in / Sign up

Export Citation Format

Share Document