generalized fractional derivative
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 29)

H-INDEX

9
(FIVE YEARS 6)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mohammadhossein Derakhshan

In this paper, the efficient combined method based on the homotopy perturbation Sadik transform method  (HPSTM) is applied to solve the physical and functional equations containing the Caputo–Prabhakar fractional derivative. The mathematical model of this equation of order μ ∈ 0,1 with λ ∈ ℤ + , θ , σ ∈ ℝ + is presented as follows: D t μ C u x , t + θ u λ x , t u x x , t − σ u x x t x , t = 0 , where for λ = 1 , θ = 1 , σ = 1 s and λ = 2 , θ = 3 , σ = 1 , equations are changed into the equal width and modified equal width equations, respectively. The analytical method which we have used for solving this equation is based on a combination of the homotopy perturbation method and Sadik transform. The convergence and error analysis are discussed in this article. Plots of the analytical results with three examples are presented to show the applicability of this numerical method. Comparison between the obtained absolute errors by the suggested method and other methods is demonstrated.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed D. Kassim ◽  
Thabet Abdeljawad ◽  
Saeed M. Ali ◽  
Mohammed S. Abdo

AbstractIn this research paper, we intend to study the stability of solutions of some nonlinear initial value fractional differential problems. These equations are studied within the generalized fractional derivative of various orders. In order to study the solutions’ decay to zero as a power function, we establish sufficient conditions on the nonlinear terms. To this end, some versions of inequalities are combined and generalized via the so-called Bihari inequality. Moreover, we employ some properties of the generalized fractional derivative and appropriate regularization techniques. Finally, the paper involves examples to affirm the validity of the results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aftab Hussain ◽  
Fahd Jarad ◽  
Erdal Karapinar

AbstractThis article proposes four distinct kinds of symmetric contraction in the framework of complete F-metric spaces. We examine the condition to guarantee the existence and uniqueness of a fixed point for these contractions. As an application, we look for the solutions to fractional boundary value problems involving a generalized fractional derivative known as the fractional derivative with respect to another function.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Khalid Hattaf

This paper presents some new formulas and properties of the generalized fractional derivative with non-singular kernel that covers various types of fractional derivatives such as the Caputo–Fabrizio fractional derivative, the Atangana–Baleanu fractional derivative, and the weighted Atangana–Baleanu fractional derivative. These new properties extend many recent results existing in the literature. Furthermore, the paper proposes some interesting inequalities that estimate the generalized fractional derivatives of some specific functions. These inequalities can be used to construct Lyapunov functions with the aim to study the global asymptotic stability of several fractional-order systems arising from diverse fields of science and engineering.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 848
Author(s):  
N. Bhangale ◽  
K. B. Kachhia

The wave equation has very significance role in many area of physics. The paper addresses thesolution of fractional differential equations of electromagnetic wave in plasma and dielectric media with Caputo generalized fractional derivative. The ρ−Laplace transform introduced by Fahd and Thabet was used to obtain the analytic solution of fractional differential equation which arising in electromagnetic fields. We investigate that the wave equation in fractional space can effectively describe the behaviour of space wave and time wave. The results show that the electromagnetic fields change with different fractional orders.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Thabet Abdeljawad ◽  
Fahd Jarad ◽  
Piyachat Borisut ◽  
...  

Abstract The present paper describes the implicit fractional pantograph differential equation in the context of generalized fractional derivative and anti-periodic conditions. We formulated the Green’s function of the proposed problems. With the aid of a Green’s function, we obtain an analogous integral equation of the proposed problems and demonstrate the existence and uniqueness of solutions using the techniques of the Schaefer and Banach fixed point theorems. Besides, some special cases that show the proposed problems extend the current ones in the literature are presented. Finally, two examples were given as an application to illustrate the results obtained.


Sign in / Sign up

Export Citation Format

Share Document