A new iterative method with $$\rho $$-Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative

Author(s):  
Nikita Bhangale ◽  
Krunal B. Kachhia ◽  
J. F. Gómez-Aguilar
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aftab Hussain ◽  
Fahd Jarad ◽  
Erdal Karapinar

AbstractThis article proposes four distinct kinds of symmetric contraction in the framework of complete F-metric spaces. We examine the condition to guarantee the existence and uniqueness of a fixed point for these contractions. As an application, we look for the solutions to fractional boundary value problems involving a generalized fractional derivative known as the fractional derivative with respect to another function.


2020 ◽  
Vol 26 (1) ◽  
pp. 35-55
Author(s):  
Abdelkader Kehaili ◽  
Ali Hakem ◽  
Abdelkader Benali

In this paper, we present the exact solutions of the Parabolic-like equations and Hyperbolic-like equations with variable coefficients, by using Homotopy perturbation transform method (HPTM). Finally, we extend the results to the time-fractional differential equations. Keywords: Caputo’s fractional derivative, fractional differential equations, homotopy perturbation transform method, hyperbolic-like equation, Laplace transform, parabolic-like equation.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Chun-Guang Zhao ◽  
Ai-Min Yang ◽  
Hossein Jafari ◽  
Ahmad Haghbin

The IVPs with local fractional derivative are considered in this paper. Analytical solutions for the homogeneous and nonhomogeneous local fractional differential equations are discussed by using the Yang-Laplace transform.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Paul Bosch ◽  
Héctor José Carmenate García ◽  
José Manuel Rodríguez ◽  
José María Sigarreta

In this paper we introduce a generalized Laplace transform in order to work with a very general fractional derivative, and we obtain the properties of this new transform. We also include the corresponding convolution and inverse formula. In particular, the definition of convolution for this generalized Laplace transform improves previous results. Additionally, we deal with the generalized harmonic oscillator equation, showing that this transform and its properties allow one to solve fractional differential equations.


Analysis ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Mohammad Hossein Derakhshan ◽  
Alireza Ansari

AbstractIn this article, we study the Hyers–Ulam stability of the linear and nonlinear fractional differential equations with the Prabhakar derivative. By using the Laplace transform, we show that the introduced fractional differential equations with the Prabhakar fractional derivative is Hyers–Ulam stable. The results generalize the stability of ordinary and fractional differential equations in the Riemann–Liouville sense.


Author(s):  
Süleyman Çetinkaya ◽  
Ali Demir

In this study, solutions of time-space fractional partial differential equations(FPDEs) are obtained by utilizing the Shehu transform iterative method. The utilityof the technique is shown by getting numerical solutions to a large number of FPDEs.


Author(s):  
J. Vanterler da C. Sousa ◽  
Rubens F. Camargo ◽  
E. Capelas de Oliveira ◽  
Gastáo S. F. Frederico

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Some new Gronwall-Bellman type inequalities are presented in this paper. Based on these inequalities, new explicit bounds for the related unknown functions are derived. The inequalities established can also be used as a handy tool in the research of qualitative as well as quantitative analysis for solutions to some fractional differential equations defined in the sense of the modified Riemann-Liouville fractional derivative. For illustrating the validity of the results established, we present some applications for them, in which the boundedness, uniqueness, and continuous dependence on the initial value for the solutions to some certain fractional differential and integral equations are investigated.


Sign in / Sign up

Export Citation Format

Share Document