scholarly journals Reply to the Letter to the Editor: Adverse Reactions of Artificial Bone Graft Substitutes: Lessons Learned From Using Tricalcium Phosphate geneX®

2013 ◽  
Vol 472 (2) ◽  
pp. 767-768 ◽  
Author(s):  
Joerg Friesenbichler ◽  
Werner Maurer-Ertl ◽  
Patrick Sadoghi ◽  
Ulrike Pirker-Fruehauf ◽  
Koppany Bodo ◽  
...  
2013 ◽  
Vol 472 (3) ◽  
pp. 976-982 ◽  
Author(s):  
Joerg Friesenbichler ◽  
Werner Maurer-Ertl ◽  
Patrick Sadoghi ◽  
Ulrike Pirker-Fruehauf ◽  
Koppany Bodo ◽  
...  

2015 ◽  
Vol 1087 ◽  
pp. 429-433 ◽  
Author(s):  
Rusnah Mustaffa ◽  
Mohd Reusmaazran Mohd Yusof ◽  
Yusof Abdullah

In Malaysia recently, it was found that cockle shell (Anadara granosa) is a potential source of biomaterial for bone repair. It is the most abundant sea species cultured in Malaysia. A possible advantage of using cockle shell as a biomaterial is that they may act as an antilog of calcium carbonate. Malaysian Nuclear Agency took this challenge to develop synthetic bone graft from natural cockle shell. To date, the artificial bone graft substitutes developed from hydroxyapatite (Ca10(PO4)6(OH)2) a bio ceramic is similar to the mineral constituent of human bone. The structure and the composition of hydroxyapatite (HA) are similar to the mineral phase of bone and, its bioactivity and biocompatibility makes it a preferred bone graft.


2011 ◽  
Vol 140 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Ya Mao ◽  
Fei Hu Zhou ◽  
Fu Zai Cui ◽  
Jiang Tao Li ◽  
Zi Shen Cheng ◽  
...  

Every year, roughly two million patients worldwide sustain a bone grafting procedure to repair bone defects stemming from tumor, the wound, the infection, as well as other reasons [1, 2]. The bone transplantation is one of main methods to treat bone damages [3]. The gold standard is to use autologous bone or autograft [4]. However, both the need of the second surgery and morbidity at the extraction site [5-7] has been an incentive to search for alternative treatment. One of them is to form bone graft bone. Many materials have been widely chosen to form bone graft substitutes: metals, polymers, ceramics, dehydrate, and calcium phosphates [8-13]. Although these synthetic materials provide an immediate solution for many patients, their long-term performance is generally not satisfactory. This is often due to a mechanical property mismatch between the implant failure and tissue damage [14, 15]. The development of combined artificial bone with improved mechanical properties and enhanced biocompatibility calls for a biomimetic approach using natural bone as a guide.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4200-4200
Author(s):  
Miroslav Koulnis ◽  
Homare Eda ◽  
Loredana Santo ◽  
Ka Tat Siu ◽  
Janani Ramachandran ◽  
...  

Abstract Model systems to study Multiple Myeloma (MM) related bone disease exist but have a number of limitations. Disseminated MM models have variable cell homing and do not precisely recapitulate the human microenvironment interactions with myeloma cells. Severe combined immunodeficiency (SCID) mice engrafted with human fetal bone (SCID-hu) have been used by us, and are able to recapitulate the human bone marrow microenvironment. The fetal bone chips are however difficult to obtain, and vary in size and shape, complicating inter-sample comparison. Similarly, the poly-ε-caprolactone polymeric scaffold, previously used to seed murine or human stromal compartment, may not correctly reproduce bone destruction and inhibition of osteogenesis by MM as seen in patients, making this model difficult to test therapies targeting the MM niche. β-tricalcium phosphate (β-TCP) is a biocompatible and biodegradable bone graft substitute that is uniform in structure and easily available, and may be a viable alternative to overcome SCID-hu difficulties in modeling MM bone disease. Here, we utilized β-TCP bone graft substitute to develop a novel in vivo MM model where β-TCP permits the development of the bone microenvironment, supports MM development, and is technically feasible and highly reproducible. Using this model, we aim to better understand the biology of the niche in MM by genetically modifying its components and by testing new niche-targeting therapies. Our initial results show that osteogenesis takes place in the β-TCP bone graft, and the implant is supportive of MM tumor growth. Inter-scapular subcutaneous implantation of β-TCP alone, or co-implantation with human-derived stromal cell line HS27A in immunocompromised recipients resulted in the expression of osteogenic markers Runx2, alkaline phosphatase (ALP), Col1A1, and Osteocalcin (OCN), as well as a marker of bone resorption. Further, implants supported the growth of human-derived MM1.S and murine 5TGM1 cells, as visualized directly in vivo by serial luciferase bioluminescence imaging (BLI) and by immunohistochemistry. Modifying the niche compartment in Cre/iDTR animals with MM disease is an exciting novel strategy to understand which niche component in vivo may be targeted to suppress MM development. Mouse strains with promoter-specific Cre recombinase that induces the expression of the diphtheria toxin (DT) receptor (iDTR) can be utilized to selectively ablate a cell population of interest in vivo, via intraperitoneal DT injection. Here, we first utilized OCN-Cre/iDTR mice to test the deletion of mature osteoblasts in β-TCP artificial bone graft post-implantation. Our data show a dose-dependent reduction in osteoblastic markers OCN, ALP, Runx2, Sclerostin, Osteoprotegerin and RANKL. Importantly, DT ablation of osteoblasts in the β-TCP implant resulted in a significantly increased 5TGM1 tumor growth, as judged by BLI and tumor weight. Our data show that the mature osteocalcin-positive niche population is protective against MM disease. Ongoing studies of the β-TCP mouse model will address the relative contribution of various osteogenic populations to the course of MM development in vivo, and test the efficacy of novel MM drugs. Disclosures Raje: BMS: Consultancy; Amgen: Consultancy; Celgene Corporation: Consultancy; Takeda: Consultancy; Onyx: Consultancy; Takeda: Consultancy; Amgen: Consultancy; Onyx: Consultancy; BMS: Consultancy; AstraZeneca: Research Funding; Eli Lilly: Research Funding; AstraZeneca: Research Funding; Millenium: Consultancy; Eli Lilly: Research Funding; Novartis: Consultancy; Acetylon: Research Funding; Millenium: Consultancy; Novartis: Consultancy; Acetylon: Research Funding.


2012 ◽  
Vol 18 (23-24) ◽  
pp. 2426-2436 ◽  
Author(s):  
Asli Ergun ◽  
Xiaojun Yu ◽  
Antonio Valdevit ◽  
Arthur Ritter ◽  
Dilhan M. Kalyon

2021 ◽  
Vol 32 (2) ◽  
pp. 526-530
Author(s):  
Takuya Uemura ◽  
Koichi Yano ◽  
Kiyohito Takamatsu ◽  
Yusuke Miyashima ◽  
Hiroyuki Yasuda ◽  
...  

Romosozumab is a humanized, anti-sclerostin monoclonal antibody used to treat osteoporosis, which increases bone formation and decreases bone resorption. It enhances fracture healing and systemic romosozumab administration may have therapeutic potentials for accelerating bone healing of even nonunion. Herein, a 61-year-old heavy smoker male with distal radius nonunion who achieved successful bone union by combination therapy of romosozumab and spanning distraction plate fixation with bone graft substitutes was presented. Through the dorsal approach, atrophic comminuted nonunion of the distal radius was sufficiently debrided. Reduction of the distal radius was performed using indirect ligamentotaxis, and a 14-hole locking plate was fixed from the third metacarpal to the radial shaft. A beta (β) tricalcium phosphate block was mainly packed into the substantial metaphyseal bone defect with additional bone graft from the resected ulnar head. Postoperatively, systemic administration of monthly romosozumab was continued for six months. Complete bone union was achieved 20 weeks postoperatively and the plate was, then, removed. Wrist extension and flexion improved to 75o and 55o, respectively, without pain, and grip strength increased 52 weeks postoperatively from 5.5 kg to 22.4 kg. During romosozumab treatment, bone formation marker levels increased rapidly and finally returned to baseline, and bone resorption marker levels remained low. In conclusion, combination of systemic romosozumab administration and grafting β-tricalcium phosphate with bridge plating provides an effective treatment option for difficult cases of comminuted distal radius nonunion with risk factors such as smoking, diabetes, and fragility.


Sign in / Sign up

Export Citation Format

Share Document