Adipogenic Mesenchymal Stromal Cells from Bone Marrow and Their Hematopoietic Supportive Role: Towards Understanding the Permissive Marrow Microenvironment in Acute Myeloid Leukemia

2015 ◽  
Vol 12 (2) ◽  
pp. 235-244 ◽  
Author(s):  
Yevgeniya Le ◽  
Sylvain Fraineau ◽  
Priya Chandran ◽  
Mitchell Sabloff ◽  
Marjorie Brand ◽  
...  
2019 ◽  
Vol 60 (8) ◽  
pp. 2042-2049
Author(s):  
Irina N. Shipounova ◽  
Nataliya A. Petinati ◽  
Alexey E. Bigildeev ◽  
Tamara V. Sorokina ◽  
Larisa A. Kuzmina ◽  
...  

Leukemia ◽  
2016 ◽  
Vol 31 (5) ◽  
pp. 1069-1078 ◽  
Author(s):  
E K von der Heide ◽  
M Neumann ◽  
S Vosberg ◽  
A R James ◽  
M P Schroeder ◽  
...  

Oncogene ◽  
2019 ◽  
Vol 39 (10) ◽  
pp. 2227-2227 ◽  
Author(s):  
Farah Kouzi ◽  
Kazem Zibara ◽  
Jerome Bourgeais ◽  
Frederic Picou ◽  
Nathalie Gallay ◽  
...  

The original version of this Article omitted the following from the Acknowledgements: This research was also supported by grants to KZ (UL and L-CNRS). This has now been corrected in both the PDF and HTML versions of the Article.


Oncogene ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 1198-1212
Author(s):  
Farah Kouzi ◽  
Kazem Zibara ◽  
Jerome Bourgeais ◽  
Frederic Picou ◽  
Nathalie Gallay ◽  
...  

Abstract The bone marrow (BM) niche impacts the progression of acute myeloid leukemia (AML) by favoring the chemoresistance of AML cells. Intimate interactions between leukemic cells and BM mesenchymal stromal cells (BM-MSCs) play key roles in this process. Direct intercellular communications between hematopoietic cells and BM-MSCs involve connexins, components of gap junctions. We postulated that blocking gap junction assembly could modify cell–cell interactions in the leukemic niche and consequently the chemoresistance. The comparison of BM-MSCs from AML patients and healthy donors revealed a specific profile of connexins in BM-MSCs of the leukemic niche and the effects of carbenoxolone (CBX), a gap junction disruptor, were evaluated on AML cells. CBX presents an antileukemic effect without affecting normal BM-CD34+ progenitor cells. The proapoptotic effect of CBX on AML cells is in line with the extinction of energy metabolism. CBX acts synergistically with cytarabine (Ara-C) in vitro and in vivo. Coculture experiments of AML cells with BM-MSCs revealed that CBX neutralizes the protective effect of the niche against the Ara-C-induced apoptosis of leukemic cells. Altogether, these results suggest that CBX could be of therapeutic interest to reduce the chemoresistance favored by the leukemic niche, by targeting gap junctions, without affecting normal hematopoiesis.


2017 ◽  
Vol 26 (10) ◽  
pp. 709-722 ◽  
Author(s):  
Laura Desbourdes ◽  
Joaquim Javary ◽  
Thomas Charbonnier ◽  
Nicole Ishac ◽  
Jerome Bourgeais ◽  
...  

2015 ◽  
Vol 39 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Bing Xia ◽  
Chen Tian ◽  
Shanqi Guo ◽  
Le Zhang ◽  
Dandan Zhao ◽  
...  

Blood ◽  
2019 ◽  
Vol 133 (5) ◽  
pp. 446-456 ◽  
Author(s):  
Amina M. Abdul-Aziz ◽  
Yu Sun ◽  
Charlotte Hellmich ◽  
Christopher R. Marlein ◽  
Jayna Mistry ◽  
...  

Abstract Acute myeloid leukemia (AML) is an age-related disease that is highly dependent on the bone marrow (BM) microenvironment. With increasing age, tissues accumulate senescent cells, characterized by an irreversible arrest of cell proliferation and the secretion of a set of proinflammatory cytokines, chemokines, and growth factors, collectively known as the senescence-associated secretory phenotype (SASP). Here, we report that AML blasts induce a senescent phenotype in the stromal cells within the BM microenvironment and that the BM stromal cell senescence is driven by p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feed back to promote AML blast survival and proliferation via the SASP. Importantly, selective elimination of p16INK4a+ senescent BM stromal cells in vivo improved the survival of mice with leukemia. Next, we find that the leukemia-driven senescent tumor microenvironment is caused by AML-induced NOX2-derived superoxide. Finally, using the p16-3MR mouse model, we show that by targeting NOX2 we reduced BM stromal cell senescence and consequently reduced AML proliferation. Together, these data identify leukemia-generated NOX2-derived superoxide as a driver of protumoral p16INK4a-dependent senescence in BM stromal cells. Our findings reveal the importance of a senescent microenvironment for the pathophysiology of leukemia. These data now open the door to investigate drugs that specifically target the “benign” senescent cells that surround and support AML.


Sign in / Sign up

Export Citation Format

Share Document