differentially methylated genes
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 172)

H-INDEX

14
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Tom Johnson ◽  
Defne Saatci ◽  
Lahiru Handunnetthi

Susceptibility to schizophrenia is mediated by genetic and environmental risk factors. Infection driven maternal immune activation (MIA) during pregnancy is a key environmental risk factor. However, little is known about how MIA during pregnancy could contribute to adult-onset schizophrenia. In this study, we investigated if maternal immune activation induces changes in methylation of genes linked to schizophrenia. We found that differentially expressed genes in schizophrenia brain were significantly enriched among MIA induced differentially methylated genes in the foetal brain in a cell-type-specific manner. Upregulated genes in layer V pyramidal neurons were enriched among hypomethylated genes at gestational day 9 (fold change = 1.57 , FDR = 0.049) and gestational day 17 (fold change = 1.97 , FDR = 0.0006). We also found that downregulated genes in GABAergic Rosehip interneurons were enriched among hypermethylated genes at gestational day 17 (fold change = 1.62, FDR= 0.03). Collectively, our results highlight a connection between MIA driven methylation changes during gestation and schizophrenia gene expression signatures in the adult brain. These findings carry important implications for early preventative strategies in schizophrenia.


2022 ◽  
Author(s):  
Pingluo Xu ◽  
Shunmou Huang ◽  
Xiaoqiao Zhai ◽  
Xiaofan Li ◽  
Haibo Yang ◽  
...  

Abstract Background: Phytoplasmas induce diseases in more than 1,000 plant species and cause substantial ecological damage and economic losses, but the specific pathogenesis of phytoplasma has not yet been clarified. N6-methyladenosine sequencing (m6A-seq) has been applied mainly to model plants and not to woody plants. Results: In this study, we applied m6A-seq to study changes in m6A modification in the Paulownia fortunei genome after phytoplasma infection. We found that the m6A modification level in seedlings infected with the phytoplasma that causes Paulownia witches' broom (PaWB) was slightly higher than the m6A modification level in PaWB-infected seedlings treated with 60 mg·L−1 methyl methanesulfonate (MMS). MMS has been shown to restore PaWB-infected seedlings to their normal form and no phytoplasma can be detected in MMS-treated PaWB-infected seedlings. RNA sequencing (RNA-seq) and m6A-seq were used to analyze the expression of genes with m6A peaks and m6A motifs in genes, respectively. The correlation analysis between the RNA-seq and m6A-seq data detected that a total of 315 differentially methylated genes were predicted to be significantly differentially expressed at the transcriptome level. The functions of genes related to PaWB were predicted by functional enrichment analysis, and two genes related to maintenance of the basic mechanism of stem cells in shoot apical meristem were discovered. One of the genes encodes the receptor protein kinase CLV2 (Paulownia_LG2G000076), and the other gene encodes the homeobox transcription factor STM (Paulownia_LG15G000976). The m6A modification levels were higher in PaWB-infected seedlings than they were in MMS-treated seedlings. In addition, genes F-box (Paulownia_LG17G000760) and MSH5 (Paulownia_LG8G001160) had exon skipping and mutually exclusive exon types of alternative splicing in PaWB-infected seedling treated with MMS. RT-PCR verified that the alternative splicing of these two genes was related to m6A modification. Conclusions: In this study, we applied m6A-seq to determine methylation levels in phytoplasma-infected Paulownia, and combined m6A-seq with transcriptome analysis to screen differentially expressed genes associated with PaWB. Also analyzed the effect of m6A methylation on alternative splicing. In future studies, we plan to verify genes directly related to PaWB and methylation-related enzymes in Paulownia to elucidate the pathogenicity mechanism of PaWB caused by phytoplasma invasion.


2021 ◽  
Author(s):  
Claudia Garcia ◽  
Alex-Alan Furtado de Almeida ◽  
Marcio Costa ◽  
Dahyana Britto ◽  
Fabio Correa ◽  
...  

Abstract Propagation by somatic embryogenesis in Theobroma cacao has some issues to be solved, as many morphologically abnormal somatic embryos that do not germinate into plants are frequently observed, thus hampering plant production on a commercial scale. For the first time the methylome landscape of T. cacao somatic embryogenesis was examined, using whole-genome bisulfite sequencing technique, with the aim to understand the epigenetic basis of somatic embryo abnormalities. We identified 873 differentially methylated genes (DMGs) in the CpG context between zygotic embryos, normal and abnormal somatic embryos, with important roles in development, programmed cell death, oxidative stress, and hypoxia induction, which can help to explain the morphological abnormalities of somatic embryos. We also identified the role of ethylene and its precursor 1-aminocyclopropane-1-carboxylate in several biological processes, such as hypoxia induction, cell differentiation and cell polarity, that could be associated to the development of abnormal somatic embryos. The biological processes and the hypothesis of ethylene and its precursor involvement in the somatic embryo abnormalities in cacao are discussed.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Anders Berglund ◽  
Jaime Matta ◽  
Jarline Encarnación-Medina ◽  
Carmen Ortiz-Sanchéz ◽  
Julie Dutil ◽  
...  

In 2021, approximately 248,530 new prostate cancer (PCa) cases are estimated in the United States. Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. The objective of this study was to assess DNA methylation patterns between aggressive and indolent PCa along with ancestry proportions in 49 H/L men from Puerto Rico (PR). Prostate tumors were classified as aggressive (n = 17) and indolent (n = 32) based on the Gleason score. Genomic DNA samples were extracted by macro-dissection. DNA methylation patterns were assessed using the Illumina EPIC DNA methylation platform. We used ADMIXTURE to estimate global ancestry proportions. We identified 892 differentially methylated genes in prostate tumor tissues as compared with normal tissues. Based on an epigenetic clock model, we observed that the total number of stem cell divisions (TNSC) and stem cell division rate (SCDR) were significantly higher in tumor than adjacent normal tissues. Regarding PCa aggressiveness, 141 differentially methylated genes were identified. Ancestry proportions of PR men were estimated as African, European, and Indigenous American; these were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation profiles associated with risk and aggressiveness of PCa in PR H/L men will shed light on potential mechanisms contributing to PCa disparities in PR population.


2021 ◽  
Author(s):  
Aurelia Wilberforce ◽  
Giulio Valentino Dalla Riva

Myalgic Encephalomyelitis, also known as Chronic Fatigue Syndrome (ME/CFS), is a debilitating illness characterised by severe fatigue and associated with immune dysfunction. Previous studies of DNA methylation (epigenetic changes that can affect the gene transcription) have found evidence of changes in immune cells for ME/CFS. However these studies have been limited by their small sample size, precluding the ability to detect changes to methylation of smaller magnitude. Therefore, to achieve a larger sample size and detect small changes to DNA methylation, we aggregate three comparable datasets and analyse them in unison. We find 10,824 differentially methylated genes, with a very small average change. We then turn our attention to the network structure of the Protein-Protein interaction, which we built from the currently known interactions of relevant proteins, and localising the network cartography framework, we identify 184 hub genes. A distinct structuring emerges, with different hub types playing differing, meaningful, biological roles. Supporting previous theories about ME/CFS, Gene ontology enrichment analysis of these hubs reveal that they are involved in immune system processes, including response to TGF-β and LPS, as well as mitochondrial functioning. We also show that dopaminergic signalling may potentially contribute to immune pathology in ME/CFS. Our results demonstrate the potentiality of network cartographic approaches in shedding light on the epigenetic contribution to the immune dysregulation of ME/CFS.


2021 ◽  
Author(s):  
Hollie Marshall ◽  
Moi T Nicholas ◽  
Jelle S van Zweden ◽  
Felix Wäckers ◽  
Laura Ross ◽  
...  

Genomic imprinting is defined as parent-of-origin allele-specific expression. In order for genes to be expressed in this manner an `imprinting' mark must be present to distinguish the parental alleles within the genome. In mammals imprinted genes are primarily associated with DNA methylation. Genes exhibiting parent-of-origin expression have recently been identified in two species of Hymenoptera with functional DNA methylation systems; Apis mellifera and Bombus terrestris. We carried out whole genome bisulfite sequencing of parents and offspring from reciprocal crosses of two B. terrestris subspecies in order to identify parent-of-origin DNA methylation. We were unable to survey a large enough proportion of the genome to draw a conclusion on the presence of parent-of-origin DNA methylation however we were able to characterise the sex- and caste-specific methylomes of B. terrestris for the first time. We find males differ significantly to the two female castes, with differentially methylated genes involved in many histone modification related processes. We also analysed previously generated honeybee whole genome bisulfite data to see if genes previously identified as showing parent-of-origin DNA methylation in the honeybee show consistent allele-specific methylation in independent data sets. We have identified a core set of 12 genes in female castes which may be used for future experimental manipulation to explore the functional role of parent-of-origin DNA methylation in the honeybee. Finally, we have also identified allele-specific DNA methylation in honeybee male thorax tissue which suggests a role for DNA methylation in ploidy compensation in this species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Yuan ◽  
Kaifeng Ma ◽  
Man Zhang ◽  
Jia Wang ◽  
Qixiang Zhang

DNA methylation is a common epigenetic modification involved in regulating many biological processes. However, the epigenetic mechanisms involved in the formation of floral scent have rarely been reported within a famous traditional ornamental plant Prunus mume emitting pleasant fragrance in China. By combining whole-genome bisulfite sequencing and RNA-seq, we determined the global change in DNA methylation and expression levels of genes involved in the biosynthesis of floral scent in four different flowering stages of P. mume. During flowering, the methylation status in the “CHH” sequence context (with H representing A, T, or C) in the promoter regions of genes showed the most significant change. Enrichment analysis showed that the differentially methylated genes (DMGs) were widely involved in eight pathways known to be related to floral scent biosynthesis. As the key biosynthesis pathway of the dominant volatile fragrance of P. mume, the phenylpropane biosynthesis pathway contained the most differentially expressed genes (DEGs) and DMGs. We detected 97 DMGs participated in the most biosynthetic steps of the phenylpropane biosynthesis pathway. Furthermore, among the previously identified genes encoding key enzymes in the biosynthesis of the floral scent of P. mume, 47 candidate genes showed an expression pattern matching the release of floral fragrances and 22 of them were differentially methylated during flowering. Some of these DMGs may or have already been proven to play an important role in biosynthesis of the key floral scent components of P. mume, such as PmCFAT1a/1c, PmBEAT36/37, PmPAL2, PmPAAS3, PmBAR8/9/10, and PmCNL1/3/5/6/14/17/20. In conclusion, our results for the first time revealed that DNA methylation is widely involved in the biosynthesis of floral scent and may play critical roles in regulating the floral scent biosynthesis of P. mume. This study provided insights into floral scent metabolism for molecular breeding.


Author(s):  
Xinran Yang ◽  
Jianfang Wang ◽  
Xinhao Ma ◽  
Jiawei Du ◽  
Chugang Mei ◽  
...  

N6-methyladenosine (m6A) is the most prevalent methylation modification of eukaryotic mRNA, and it plays an important role in regulating gene expression. Previous studies have found that m6A methylation plays a role in mammalian skeletal muscle development. However, the effect of m6A on bovine skeletal myogenesis are still unclear. Here, we selected proliferating myoblasts (GM) and differentiated myotubes (on the 4th day of differentiation, DM) for m6A-seq and RNA-seq to explore the m6A methylation modification pattern during bovine skeletal myogenesis. m6A-seq analysis revealed that m6A methylation was an abundant modification of the mRNA in bovine myoblasts and myotubes. We scanned 5,691–8,094 m6A-modified transcripts, including 1,437 differentially methylated genes (DMGs). GO and KEGG analyses revealed that DMGs were primarily involved in transcriptional regulation and RNA metabolism, as well as insulin resistance and metabolic pathways related to muscle development. The combined analysis further identified 268 genes that had significant changes at both m6A and mRNA levels, suggesting that m6A modification may regulate myoblast differentiation by mediating the expression of these genes. Furthermore, we experimentally confirmed four genes related to myogenesis, including MYOZ2, TWIST1, KLF5 and MYOD1, with differential changes in both m6A and mRNA levels during bovine myoblast differentiation, indicating that they can be potential candidate targets for m6A regulation of skeletal myogenesis. Our results may provide new insight into molecular genetics and breeding of beef cattle, and provide a reference for investigating the mechanism of m6A regulating skeletal muscle development.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1826
Author(s):  
Yifan Xu ◽  
Chia-Wen Tsai ◽  
Wen-Shin Chang ◽  
Yuyan Han ◽  
Maosheng Huang ◽  
...  

DNA methylation plays important roles in prostate cancer (PCa) development and progression. African American men have higher incidence and mortality rates of PCa than other racial groups in U.S. The goal of this study was to identify differentially methylated CpG sites and genes between clinically defined aggressive and nonaggressive PCa in African Americans. We performed genome-wide DNA methylation profiling in leukocyte DNA from 280 African American PCa patients using Illumina MethylationEPIC array that contains about 860K CpG sties. There was a slight increase of overall methylation level (mean β value) with the increasing Gleason scores (GS = 6, GS = 7, GS ≥ 8, P for trend = 0.002). There were 78 differentially methylated CpG sites with P < 10−4 and 9 sites with P < 10−5 in the trend test. We also found 77 differentially methylated regions/genes (DMRs), including 10 homeobox genes and six zinc finger protein genes. A gene ontology (GO) molecular pathway enrichment analysis of these 77 DMRs found that the main enriched pathway was DNA-binding transcriptional factor activity. A few representative DMRs include HOXD8, SOX11, ZNF-471, and ZNF-577. Our study suggests that leukocyte DNA methylation may be valuable biomarkers for aggressive PCa and the identified differentially methylated genes provide biological insights into the modulation of immune response by aggressive PCa.


Author(s):  
Yongfeng Zhang ◽  
Chunnian Liang ◽  
Xiaoyun Wu ◽  
Jie Pei ◽  
Xian Guo ◽  
...  

Yak (Bos grunniens) is considered an iconic symbol of Tibet and high altitude, but they suffer from malnutrition during the cold season that challenges the metabolism of energy. Adipocytes perform a crucial role in maintaining the energy balance, and adipocyte differentiation is a complex process involving multiple changes in the expression of genes. N6-methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation as the most widespread mRNA modification of the higher eukaryotes. However, currently there is no research existing on the m6A transcriptome-wide map of bovine animals and their potential biological functions in adipocyte differentiation. Therefore, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to determine the distinctions in m6A methylation and gene expression during yak adipocyte differentiation. In yak adipocyte and preadipocyte the content of m6A and m6A-associated enzymes was substantially different. In the two groups, a total of 14,710 m6A peaks and 13,388 m6A peaks were identified. For the most part, m6A peaks were enriched in stop codons, 3′-untranslated regions, and coding regions with consensus motifs of GGACU. The functional enrichment exploration displayed that differentially methylated genes participated in some of the pathways associated with adipogenic metabolism, and several candidate genes (KLF9, FOXO1, ZNF395, and UHRF1) were involved in these pathways. In addition to that, there was a positive association between m6A abundance and levels of gene expression, which displayed that m6A may play a vital role in modulating gene expression during yak adipocyte differentiation. Further, in the adipocyte group, several methylation gene protein expression levels were significantly higher than in preadipocytes. In short, it can be concluded that the current study provides a comprehensive explanation of the m6A features in the yak transcriptome, offering in-depth insights into m6A topology and associated molecular mechanisms underlying bovine adipocyte differentiation, which might be helpful for further understanding its mechanisms.


Sign in / Sign up

Export Citation Format

Share Document