cell senescence
Recently Published Documents


TOTAL DOCUMENTS

1130
(FIVE YEARS 415)

H-INDEX

73
(FIVE YEARS 13)

2022 ◽  
Vol 12 (4) ◽  
pp. 711-716
Author(s):  
Xuechuan Yan ◽  
Xin Wang ◽  
Haifeng Yang ◽  
Jian Yang ◽  
Haikun Li

This study assessed the mechanism of Bone Marrow Stromal Cells (BMSCs) in prostate cancer (PC) and its effect on MTA-1 gene and PC cell senescence. PC-3 cells were assigned into QL group (prostate cancer group: normal culture) and GS group (BMSCs group: treated with BMSCs) followed by analysis of MTA-1 level, cell senescence, apoptosis and invasion. MTA-1 level in QL group (0.83±0.07) was significantly higher than GS group (0.14±0.02) (P < 0.05), indicating that BMSCs had an inhibitory effect on MTA-1 expression. Similar change of MTA-l mRNA was also found with higher level in QL group than GS group (P < 0.05). Cell senescence was found in QS group but not QL group, indicating that BMSCs promote cell senescence. Compared with GS group, QL group has a higher cell number in G0/G1 (67.13±6.45%) and S (19.59±3.35%) than GS group (G0/G1:50.51±2.19% and S: 11.42±1.61%) but lower G2/M (QL: 15.97±3.59% versus GS: 32.25±3.24%). QL group had significantly lower cell apoptosis rate at 35 h (5.21±1.2%) and 45 h (3.97±0.95%) than GS group at 35 h (17.85±1.23%), 45 h (10.21±1.26%) with elevated number of invasions. In conclusion, BMSCs promote PC-3 cell senescence and apoptosis by inhibiting the expression of MTA-1 and reduce cell invasion ability.


Aging Cell ◽  
2022 ◽  
Author(s):  
Meilin Hu ◽  
Liangyu Xing ◽  
Li Zhang ◽  
Fan Liu ◽  
Sheng Wang ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Qibing Zeng ◽  
Sufei Du ◽  
Yuyan Xu ◽  
Fan Yang ◽  
Liping Wu ◽  
...  

Chronic exposure to inorganic arsenic is a major environmental public health issue worldwide affecting more than 220 million of people. Previous studies have shown the correlation between arsenic poisoning and cellular senescence; however, knowledge regarding the mechanism and effective prevention measures has not been fully studied. First, the associations among the ERK/CEBPB signaling pathway, oxidative stress, and arsenic-induced skin cell senescence were confirmed using the HaCaT cell model. In the arsenic-exposed group, the relative mRNA and protein expressions of ERK/CEBPB signaling pathway indicators (ERK1, ERK2, and CEBPB), cell cycle-related genes (p21, p16INK4a), and the secretion of SASP (IL-1α, IL-6, IL-8, TGF-β1, MMP-1, MMP-3, EGF, and VEGF) and the lipid peroxidation product (MDA) were significantly increased in cells ( P < 0.05 ), while the activity of antioxidant enzyme (SOD, GSH-Px, and CAT) was significantly decreased ( P < 0.05 ), and an increased number of cells accumulated in the G1 phase ( P < 0.05 ). Further Kaji-ichigoside F1 intervention experiments showed that compared to that in the arsenic-exposed group, the expression level of the activity of antioxidant enzyme was significantly increased in the Kaji-ichigoside F1 intervention group ( P < 0.05 ), but the indicators of ERK/CEBPB signaling pathway, cell cycle-related genes, and SASP were significantly decreased ( P < 0.05 ), and the cell cycle arrest relieved to a certain extent ( P < 0.05 ). Our study provides some limited evidence that the ERK/CEBPB signaling pathway is involved in low-dose arsenic-induced skin cell senescence, through regulating oxidative stress. The second major finding was that Kaji-ichigoside F1 can downregulate the ERK/CEBPB signaling pathway and regulate the balance between oxidation and antioxidation, alleviating arsenic-induced skin cell senescence. This study provides experimental evidence for further understanding of Kaji-ichigoside F1, a natural medicinal plant that may be more effective in preventing and controlling arsenic poisoning.


Author(s):  
Zengxin Jiang ◽  
Chang Jiang ◽  
Lixia Jin ◽  
Zixian Chen ◽  
Zhenzhou Feng ◽  
...  

2022 ◽  
Author(s):  
Min-yan Li ◽  
Yan-qin Qin ◽  
Jian-sheng Li ◽  
Peng Zhao ◽  
Yan-ge Tian ◽  
...  

Abstract Background: Effective-component compatibility of Bufei Yishen formula Ⅲ (ECC-BYF Ⅲ) shows positive effects on stable chronic obstructive pulmonary disease (COPD).Purpose: To investigate the mechanisms of ECC-BYF Ⅲ on COPD rats from the aspect of airway epithelial cell senescence.Methods: COPD model rats were treated with ECC-BYF Ⅲ for 8 weeks and the efficacy was evaluated. Cigarette smoke extract (CSE) induced senescence model of airway epithelial cells were treated with ECC-BYF Ⅲ, the related enzymes and proteins involved in oxidative stress and mitophagy were detected.Results: ECC-BYF Ⅲ markedly rescued pulmonary function and histopathological changes, which might be associated with the amelioration of lung senescence, including reduction of malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and matrix metalloproteinase (MMP)-9, increase of the level of total superoxide dismutase (T-SOD), and decease of p21 level in airway. Furthermore, ECC-BYF Ⅲ suppressed p16, p21 expressions and senescence-associated β-galactosidase (SA-β-Gal) in CSE-induced airway epithelial cells. Moreover, ECC-BYF Ⅲ upregulated the mitophagy-related proteins, including co-localization of TOM20 and LC3B, PINK1, PARK2, and improved mitochondrial function with upregulating mitochondrial mitofusin (Mfn)2 and reducing dynamin-related protein 1 (Drp1) expression. ECC-BYF Ⅲ enhanced the activities of T-SOD and GSH-PX by up-regulating Nrf2, thus inhibiting oxidative stress. After intervention with Nrf2 inhibitor, the regulation effects of ECC-BYF Ⅲ on oxidative stress, mitophagy and senescence in airway epithelial cells were significantly suppressed.Conclusions: ECC-BYF Ⅲ exerts beneficial effects on COPD rats by ameliorating airway epithelial cell senescence, which is mediated by inhibiting oxidative stress and subsequently enhancing mitophagy through activation of Nrf2 signaling.


2022 ◽  
pp. 383-422
Author(s):  
Tengfei Wan ◽  
Satomi Miwa ◽  
Thomas von Zglinicki
Keyword(s):  

2022 ◽  
pp. 81-105
Author(s):  
Emmanuelle Born ◽  
Larissa Lipskaia ◽  
Shariq Abid ◽  
Amal Houssaini ◽  
Marielle Breau ◽  
...  

Medicina ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 61
Author(s):  
Artaria Tjempakasari ◽  
Heri Suroto ◽  
Djoko Santoso

Mesenchymal stem cells (MSCs) are stem cells with the potential ability to differentiate into various cells and the ability to self-renew and resemble fibroblasts. These cells can adhere to plastic to facilitate the culture process. MSCs can be used in research into tissue biotechnology and rejuvenation medicine. MSCs are also beneficial in recipient tissue and differentiate as a breakthrough strategy through paracrine activity. Many databases have shown MSC-based treatment can be beneficial in the reduction of osteogenesis induced by senescence. In this article, we will discuss the potential effect of MSCs in senescence cells related to osteogenesis.


Sign in / Sign up

Export Citation Format

Share Document